• Title/Summary/Keyword: environmental quantification

Search Result 504, Processing Time 0.026 seconds

Quantification of Localized Fracture Mechanism of Recycled Aggregate Concrete in Compression using Acoustic Emission Technique (음향방출기법을 이용한 순환골재 콘크리트의 압축파괴 기구의 정량화)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.87-94
    • /
    • 2007
  • Reuse of recycled aggregate from demolished concrete structure is beneficial and necessary from the viewpoint of environmental preservation and effective utilization of resources. The most important mechanical properties of recycled aggregate concrete (RAC) are the compressive strength, the tensile and the flexural strengths, the bond strength and the elastic modulus of such concrete. In particular, the stress-strain relation and fracture process of RAC in compression is especially important in theoretical and numerical analysis as well as engineering design of RAC structures. In this paper, to clarify the characteristics of fracture process in RAC, acoustic emission(AE) method is applied to detect micro-cracking in concrete under compression. From AE parameters, it is found that cracking and fracture behaviors in recycled aggregate concrete fairly differ from that of normal and recycled sand concrete.

Analysis of Significance between SWMM Computer Simulation and Artificial Rainfall on Rainfall Runoff Delay Effects of Vegetation Unit-type LID System (식생유니트형 LID 시스템의 우수유출 지연효과에 대한 SWMM 전산모의와 인공강우 모니터링 간의 유의성 분석)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.34-44
    • /
    • 2020
  • In order to suggest performance analysis directions of ecological components based on a vegetation-based LID system model, this study seeks to analyze the statistical significance between monitoring results by using SWMM computer simulation and rainfall and run-off simulation devices and provide basic data required for a preliminary system design. Also, the study aims to comprehensively review a vegetation-based LID system's soil, a vegetation model, and analysis plans, which were less addressed in previous studies, and suggest a performance quantification direction that could act as a substitute device-type LID system. After monitoring artificial rainfall for 40 minutes, the test group zone and the control group zone recorded maximum rainfall intensity of 142.91mm/hr. (n=3, sd=0.34) and 142.24mm/hr. (n=3, sd=0.90), respectively. Compared to a hyetograph, low rainfall intensity was re-produced in 10-minute and 50-minute sections, and high rainfall intensity was confirmed in 20-minute, 30-minute, and 40-minute sections. As for rainwater run-off delay effects, run-off intensity in the test group zone was reduced by 79.8% as it recorded 0.46mm/min at the 50-minute point when the run-off intensity was highest in the control group zone. In the case of computer simulation, run-off intensity in the test group zone was reduced by 99.1% as it recorded 0.05mm/min at the 50-minute point when the run-off intensity was highest. The maximum rainfall run-off intensity in the test group zone (Dv=30.35, NSE=0.36) recorded 0.77mm/min and 1.06mm/min in artificial rainfall monitoring and SWMM computer simulation, respectively, at the 70-minute point in both cases. Likewise, the control group zone (Dv=17.27, NSE=0.78) recorded 2.26mm/min and 2.38mm/min, respectively, at the 50-minutes point. Through statistical assessing the significance between the rainfall & run-off simulating systems and the SWMM computer simulations, this study was able to suggest a preliminary design direction for the rainwater run-off reduction performance of the LID system applied with single vegetation. Also, by comprehensively examining the LID system's soil and vegetation models, and analysis methods, this study was able to compile parameter quantification plans for vegetation and soil sectors that can be aligned with a preliminary design. However, physical variables were caused by the use of a single vegetation-based LID system, and follow-up studies are required on algorithms for calibrating the statistical significance between monitoring and computer simulation results.

Quantification of kerosene and Diesel in Mixed Petroleum Fuels for Environmental Sample Characterization (다종유류 오염 환경매체에서의 유류 분리.정량에 관한 연구(I) - 등유, 경유 정량을 중심으로 -)

  • 이군택;이민효
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.23-31
    • /
    • 2000
  • The objective of this study was to develop an effective separation and quantification method for kerosene and diesel in a mixed petroleum fuel (gasoline, kerosene, and diesel) contaminated environmental samples. This investigation was directed to prove the hypothesis that if the source of petroleum fuels were identical, the peak-area ratios of a reference n-alkane to other n-alkane peaks should be a constant even at the different concentrations. In addition, experimental recovery rates were determined to select the reference peaks of kerosene and diesel for peak area ratio measurements. The experimental results showed that the peak area ratios were constant among the samples having different concentrations when the ratios were calculated from areas of $C_{l3}$, $C_{l4}$, and $C_{15}$ peaks for kerosene and $C_{l6}$ and $C_{l7}$ peak for diesel as reference n-alkane peaks. The recovery rates were evaluated by comparing the relative peak area ratios of each reference peaks after making pairs of the kerosene and diesel reference peaks in the samples contained a known amount of gasoline, kerosene, and diesel. The recovery rates(%) Were 107.0$_{{\pm}20.6}$/86.6/ sub $\pm$15.9/ for kerosene- $C_{13}$/diesel- $C_{16}$, 99.6$\pm$$_{17.2}$/86.6$_{{\pm}15.9}$ for kerosene- $C_{14}$/diesel- $C_{16}$, 73.9/$\pm$14.4//86.6$_{{\pm}sub 15.9}$ for kerosene- $C_{15}$ /diesel- $C_{16}$, 109.4$_{{pm}0.8}$/75.9$_{{pm}4.7}$ for kerosene- $C_{13}$/diesel- $C_{17}$, 107.4$_{{pm}7.9}$/75.9$_{{pm}4.7}$ for kerosene- $C_{14}$/diesel- $C_{17}$, and 95.7$_{{pm}4.6}$ /75.9/$\pm$14.6//75.9$_{{pm$}4.7}$ for kerosene- $C_{15}$ /diesel- $C_{17.}$ The above experimental results confirm that all of the reference peak pairs of kerosene and diesel are applicable to the quantitative analysis for the mixed fuel contaminated samples, but the kerosene- $C_{15}$ /diesel- $C_{l7}$ peaks are recommended since the pair has a lower standard deviation than the other pairs.s..s.s.s..s..s.s.s.s.s.

  • PDF

Establishment of Priority Forest Areas Based on Hydrological Ecosystem Services in Northern Vietnam (수문학적 생태계 서비스를 고려한 북부베트남의 우선보전산림 설정)

  • Kong, Inhye;Lee, Dongkun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.29-41
    • /
    • 2014
  • Ecosystem services provide various benefits to human beings, but are considered to be free of cost. To protect ecosystems in an economically sustainable way, several developing countries have adopted a policy known as the Payment for Ecosystem Services (PES) that compensates upstream services with monetary incentives collected from service users. Vietnam is one of the countries that have enacted a nationwide PES policy. However, the policy in Vietnam requires further development in order to evaluate the spatial priority zones based on the quantification of ecosystem services. To obtain a recent and high-quality land cover map, we first classified the land cover in the Da River basin, in northern Vietnam, using Landsat dataset. We then applied a water balance theory and an USLE equation to assess hydrological ecosystem services concerning water supply and sediment retention. Following the assessment, we identified the priority areas for hydrological ecosystem services exclusively for forest environments. We found that the quantity and distribution of services from forests varied, due to the topography, climate, and land cover. According to a quantile distribution, Mt. Phu Luong, Mt. Fansipan, and Hoang Lien National Park were evaluated as high service areas in terms of both water yield and sediment retention. As a result, this assessment method can help construct spatial priority zones concerning ecosystem service distribution, and can also contribute to benefit sharing by indicating which forest and landowners require compensation.

Study on effect on CO2 flux of wetland soil by feces of Korean water deer(Hydropotes inermis) (고라니(Hydropotes inermis)의 분변이 습지 토양의 CO2 flux에 미치는 영향)

  • Park, Hyomin;Chun, Seunghoon;Lee, Sangdon
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 2015
  • The total global emission of $CO_2$ from soils is recognized as one of the largest fluxes in the global carbon cycle. Especially it is necessary to quantify the amount of $CO_2$ emitted by the organic material decomposition processes of microorganisms in the soil, because it becomes one of a factor for determining the carbon stocks in the soil. This study was conducted to estimate the impact of the Korean water deer(Hydropotes inermis)' feces to the soil organic matter. Also, effects of Korean water deer' feces on $CO_2$ emissions of soil and land use pattern dependent $CO_2$ flux quantification are studied. The organic materials in the Korean water deer' feces significantly changed organic matter content of soil and influenced the activity of soil microorganisms, both changing of respiration of the soil and physical chemical components in soil. In particular, C/N ratio and the $CO_2$ flux of soil of four regions (Rice paddy, Fallow ground, Salix koreensis community, Phragmites australis community) showed a statistically highly significant correlation (P<0.01) with the presence or absence of feces. $CO_2$ flux of soil affected by the feces was 2-20 times higher than the soil unaffected by the feces. This study has great significance to quantify the extent of the material circulation and its impact to the terrestrial ecosystem and soil zone throughout Korean water deer' feces. Feces of wildlife can affect soil and soil material circulation.

Effect of Thermal Treatments on Flavonoid Contents in Domestic Soybeans (국내산 대두(Glycine max. Merr)자원의 플라보노이드 대사체 동정 및 열처리 효과)

  • Shin, Jae-Hyeong;Kim, Heon-Woong;Lee, Min-Ki;Jang, Ga-Hee;Lee, Sung-Hyen;Jang, Hwan-Hee;Hwang, Yu-Jin;Park, Keum-Yong;Song, Beom-Heon;Kim, Jung-Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • BACKGROUND: Soy isoflavones, structurally similar to endogenous estrogens, may affect human body through both hormonally mediated and non-hormonally related mechanisms. Heat processing could change chemical compositions. The effects of different thermal processes, boiling and HTHP(high temperature and high pressure) on the composition of isoflavone compounds and total amount of domestic soybeans were investigated in this study. METHOD AND RESULTS: Three different kinds of soybean samples were collected from RDA-Genebank. The samples were extracted using methanol, distilled water, and formic acid based solvent. Also the same solvents were used for mobile phase in UPLC/ToF/MS. All of the isoflavone compounds were analyzed based on the aglycone type of external standard for quantification. The standard calibration curve presented linearity with the correlation coefficient R2 > 0.98, analysed from 1 to 50 ppm concentration. The total isoflavone contents does not change by treatment within the same breed. While "boiling" and "HTHP" processes tend to increase the contents of aglycone and ${beta}$-glucosides, "fresh" soybeans retained the high concentration of malonylglucosides. CONCLUSION: These results have to be considered while developing an effective functional food, from the health while point of view using soybeans.

Reactivated Timings of Yangsan Fault in the Northern Pohang Area, Korea (포항 북부지역 양산단층의 재활동 연대)

  • Sim, Ho;Song, Yungoo;Son, Moon;Park, Changyun;Choi, Woohyun;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Here we present the timings of reactivated events from a fault in the northern Pohang area, which should be located at the northern-end of Yangsan fault line, the major fault in the southeastern Korean Peninsula. Recently developed illite-age-analysis (IAA) approach was employed for determining the fault-activated timing, combined with illite-polytype quantification using the optimized full-pattern-fitting (FPF) method, and K-Ar age-dating for each size fraction($<0.1{\mu}m$, $0.1-0.4{\mu}m$, and $0.4-1.0{\mu}m$) of 4 fault clay samples. Two chronological records of brittle fault-activation events were recognized at $19.6{\pm}1.86Ma$ and $26.1{\pm}2.55-27.9{\pm}3.46Ma$. The ages are much younger than those of fault clays from Sangcheon-ri area (41.5~43.5 and 50.7 Ma), the southern part of Yangsan fault line, and are close to the timing of East Sea-opening event. Further chronological analysis for additional sites of the Yangsan fault should be needed to reveal the time-scheme of the tectonic events and their spatial distributions along the fault line.

Real-time Micro-algae Flocculation Analysis Method Based on Lens-free Shadow Imaging Technique (LSIT) (렌즈프리 그림자 이미징 기술을 이용한 실시간 미세조류 응집현상 분석법)

  • Seo, Dongmin;Oh, Sangwoo;Dong, Dandan;Lee, Jae Woo;Seo, Sungkyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • Micro-algae, one of the biological resources for alternative energy, has been heavily studied. Among various methods to analyze the status of the micro-algae including counting, screening, and flocculation, the flocculation approach has been widely accepted in many critical applications such as red tide removal study or microalgae resource study. To characterize the flocculation status of the micro-alga. A traditional optical modality, i.e., photospectrometry, measuring the optical density of the flocs has been frequently employed. While this traditional optical method needs shorter time than the counting method in flocculation status analysis, it has relatively lower detection accuracy. To address this issue, a novel real-time micro-algae flocculation analysis method based on the lens-free shadow imaging technique (LSIT) is introduced. Both single cell detection and floc detection are simultaneously available with a proposed lens-free shadow image, confirmed by comparing the results with optical microscope images. And three shadow parameters, e.g., number of flocs, effective area of flocs, and maximum size of floc, enabling quantification of the flocculation phenomenon of micro-alga, are firstly demonstrated in this article. The efficacy of each shadow parameter is verified with the real-time flocculation monitoring experiments using custom developed cohesive agents.

A Study on the Introduction Plan of the Places of Refuge in Domestic Areas based on the Analysis of Foreign Cases (국외 사례 분석을 통한 국내 선박 피난처 도입 방안에 관한 연구)

  • Lee, Chang-Hyun;Park, Sung-Hyeon;Jeong, Jung-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.235-241
    • /
    • 2012
  • A huge marine accident causes a loss of valuable lives, property and the serious marine environment pollution. IMO adopted resolution A.949(23) to provide Places of Refuge(PoR) to 'Ship in need of assistance', which is to minimize the secondary environmental pollution caused by marine accidents. If the level of risk exceeds a certain range, it is necessary to be designated as Places of Refuge(PoR) after evaluation of potential risk, which is based on the database of several marine environmental factors. Also, it is necessary to develop skills about quantification/standardization of vessel traffic safety, complexity and risk. Because there is the close relation between the problem of designating Places of Refuge(PoR) and the policy of nation for protecting the natural environment of coastal state, it is important to prepare related legislation. In this paper, introduction of Places of Refuge(PoR) in domestic areas have been suggested based on the analysis of several foreign designating cases.

Distribution and Risk Assessment of Bisphenol-A in Tap Water from Rehabilitated Indoor Water Service Pipe (갱생 옥내급수관 수돗물에서 비스페놀-A 분포 및 위해성 평가)

  • Jeong, Gwanjo;Son, Boyoung;Lee, Inja;Ahn, Chihwa;Kim, Junil;Moon, Boram;Lee, Suwon;Ahn, Jaechan;Kim, Bogsoon;Chung, Deukmo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.371-376
    • /
    • 2016
  • In this study, the survey of bisphenol-A in indoor water service pipes rehabilitated with epoxy resin was conducted and the risk assessment was done to investigate the effect on the human health to drink tap water. Bisphenol-A in raw water was detected in a range of 50~118 ng/L in all samples, where the limit of quantification was 10 ng/L. This is caused by inflow of the sewage effluent or the tributaries of the surrounding area containing bisphenol-A. Bisphenol-A was not detected in finished water after the advanced water treatment process. It was achieved by its removal from the processes of flocculation-precipitation and oxidation of ozone and chlorine and by being changed to other by-product materials. For the indoor water service pipe, bisphenol-A was not detected in all cases which was not coated with epoxy resin. However, when epoxy resin is lined within the indoor water service pipe, bisphenol-A was identified at maximum level of 521 ng/L and was detected above the limit of quantitation at 68 percentages of all samples. The Hazard Quotient (HQ) at the maximum level (521 ng/L) of the detected bisphenol-A is 0.004, which is less than the reference value of 0.1 for the tap water intake. Therefore, it is considered that the detected levels of bisphenol-A in this study would be safe to drink tap water.