• Title/Summary/Keyword: environmental parameters

Search Result 5,099, Processing Time 0.038 seconds

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.

The Effect Analysis of Vegetation Diversity on Rice-Fish Mixed Farming System in Paddy Wetland (벼-담수어 복합생태농업이 논습지 식생다양성에 미치는 영향 분석)

  • Kong, Minjae;Kim, Changhyun;Lee, Sangmin;Park, Kwanglai;An, Nanhee;Cho, Junglai;Kim, Bongrae;Lim, Jongahk;Lee, Changwon;Kim, Hyeongsu;Nam, Hongsik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.398-409
    • /
    • 2018
  • Organic farming practices including loach based ecosystem-farming have been demonstrated to be effective in conjunction with rice farming to increase yield and quality. This new form of farming combines agriculture and fishery and is quickly developing into a new industry. The current study investigated the effect of rice-fish mixed farming system on the vegetation-diversity function. Vegetation within the four study sites was surveyed and analyzed based on plant taxonomy. The vegetation survey demonstrated that 127 taxa of 38 families, 100 genera, 107 species, and 20 varieties occurred within the study sites. A total of 15 plant species taxa occurred in the rice-fish mixed paddy fields with a fish habitat and did not occur in the conventional paddy field lacking fish habitat. This difference is thought to arise from differences in moisture requirements for vegetation. Life form analysis demonstrated differences in hemicryptophytes, therophytes, and hydrophytes according to fish habitat. The naturalized plants identified were also determined to be species widely distributed throughout Korea. Frequency analysis demonstrated that the rice-fish mixed paddy fields with a fish habitat had a high ratio of both obligate and facultative wetland plants relative to the conventional paddy field. Based on the study results, it is likely that vegetation-diversity will increase with environment diversity. However, no statistical significance was observed according to paddy types. Future research should aim to identify additional environmental factors, including the existence of fish habitat, habitat area, depth of fish habitat, hydrological parameters, water quality, and paddy soil environment, to enhance vegetation-diversity and biocultural diversity.

History and Future Direction for the Development of Rice Growth Models in Korea (벼 작물생육모형 국내 도입 활용과 앞으로의 연구 방향)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Cho, Chongil;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.167-174
    • /
    • 2019
  • A process-oriented crop growth model can simulate the biophysical process of rice under diverse environmental and management conditions, which would make it more versatile than an empirical crop model. In the present study, we examined chronology and background of the development of the rice growth models in Korea, which would provide insights on the needs for improvement of the models. The rice crop growth models were introduced in Korea in the late 80s. Until 2000s, these crop models have been used to simulate the yield in a specific area in Korea. Since then, improvement of crop growth models has been made to take into account biological characteristics of rice growth and development in more detail. Still, the use of the crop growth models has been limited to the assessment of climate change impact on crop production. Efforts have been made to apply the crop growth model, e.g., the CERES-Rice model, to develop decision support system for crop management at a farm level. However, the decision support system based on a crop growth model was attractive to a small number of stakeholders most likely due to scarcity of on-site weather data and reliable parameter sets for cultivars grown in Korea. The wide use of the crop growth models would be facilitated by approaches to extend spatial availability of reliable weather data, which could be either measured on-site or estimates using spatial interpolation. New approaches for calibration of cultivar parameters for new cultivars would also help lower hurdles to crop growth models.

Biopolymer Amended Soil Reduces the Damages of Zn Excess in Camlina sativa L. (토양 내 바이오폴리머 혼합에 의한 Camelina sativa L.의 Zn 과잉 스트레스 피해 경감 효과)

  • Shin, Jung-Ho;Kim, Hyun-Sung;Kim, Eunsuk;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.262-273
    • /
    • 2020
  • Amending biopolymers such as β-glucan (BG) and Xanthan gum (XG) generally enhances soil strength by ionic and hydrogen bonds between soil particles. Thus, biopolymers have been studied as eco-friendly construction materials in levees. However, physiological responses of plants grown on soil amended with biopolymers are not fully understood. This study focuses on the effects of biopolymers on the growth of Camelina sativa L. (Camelina) under excess zinc (Zn) stress. The optimal concentrations of BG and XG were confirmed to have a 0.5% ratio in soil depending on the physiological parameters of Camelina under excess Zn stress. The Zn binding capacity of biopolymers was investigated using 1,5-diphenylthiocarbazone (DTZ). The reduction of Zn damage in Camelina was evaluated by analyzing the Zn content and expression of heavy metal ATPase (HMA) genes under excess Zn stress. Amendments of BG and XG improved Camelina growth under excess Zn stress. In DTZ staining and ICP-OES analysis, Camelina grown on BG and XG soil showed less Zn uptake than normal soil under excess Zn stress. The Zn-inducible CsHMA3 gene was not stimulated by either BG or XG amendment under excess Zn stress. Moreover, both BG and XG amendments in soil exhibit Zn-stress mitigation similar to that of Zn-tolerant CsHMA3 overexpres sed Camelina. These results indicate that biopolymer-amended soils may influence the prevention of Zn absorption in Camelina under excess Zn stress. Thus, BG and XG are proven to be suitable materials for levee construction and can protect plants from soil contamination by Zn.

Experimental Transplantation for the Restoration of Seagrass, Zostera marina L. Bed Around Sinyangseopji Beach in Bangdu Bay, Jeju Island (제주 신양섭지해수욕장 주변 방두만 거머리말 군락 복원을 위한 실험적 이식)

  • LEE, HYUNG WOO;KANG, JEONG CHAN;PARK, JUNG-IM;KIM, MYUNG SOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.343-355
    • /
    • 2021
  • Eelgrass, Zostera marina L., was widely distributed around Sinyangseopji Beach in Bangdu Bay, on the eastern coast of Jeju Island, until breakwater construction in the late 1990s resulted in its complete loss. Six experimental sites were identified for restoration of the Z. marina bed in Bangdu Bay. Using the staple method, 500 Z. marina shoots were transplanted at each site in January 2019 and 2020. The transplants, along with environmental parameters, were monitored for 10 months following transplantation. There were significant differences in underwater irradiance, water temperature, and salinity among the sites, but all were suitable for Z. marina growth. The Ulva species, an opportunistic alga, appeared in spring and accumulated during summer at all sites; however, there was no significant effect of Ulva species on the survival and growth of the eelgrass transplants. Most of the transplanted Z. marina survived, and after 3 months, the density increased by 112.5-300% due to vegetative propagation, with a rapid rate of increase observed during spring and early summer at all sites. For 1-2 months after transplanting, the Z. marina shoots showed signs of transplant shock, after which the shoot density increased at all sites, confirming that all transplants adapted well to the new environment. However, in both 2019 and 2020, during late summer to early fall, the sites experienced heavy damage from typoons (twice in 2019 and three times in 2020) that hit Bangdu Bay. The transplants at two sites located in the center of Bangdu Bay were completely destroyed, but those at three sites located to the west of the bay showed a 192-312% increase in density. Thus, we confirmed that the Bangdu Bay Z. marina bed can be restored, with the highest probability of success for Z. marina restoration on the western side of Bangdu Bay, which is protected from typhoons.

Simplified Method for Estimation of Mean Residual Life of Rubble-mound Breakwaters (경사제의 평균 잔류수명 추정을 위한 간편법)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • A simplified model using the lifetime distribution has been presented to estimate the Mean Residual Life (MRL) of rubble-mound breakwaters, which is not like a stochastic process model based on time-dependent history data to the cumulative damage progress of rubble-mound breakwaters. The parameters involved in the lifetime distribution can be easily estimated by using the upper and lower limits of lifetime and their likelihood that made a judgement by several experts taking account of the initial design lifetime, the past sequences of loads, and others. The simplified model presented in this paper has been applied to the rubble-mound breakwater with TTP armor layer. Wiener Process (WP)-based stochastic model also has been applied together with Monte-Carlo Simulation (MCS) technique to the breakwater of the same condition having time-dependent cumulative damage to TTP armor layer. From the comparison of lifetime distribution obtained from each models including Mean Time To Failure (MTTF), it has found that the lifetime distributions of rubble-mound breakwater can be very satisfactorily fitted by log-normal distribution for all types of cumulative damage progresses, such as exponential, linear, and logarithmic deterioration which are feasible in the real situations. Finally, the MRL of rubble-mound breakwaters estimated by the simplified model presented in this paper have been compared with those by WP stochastic process. It can be shown that results of the presented simplified model have been identical with those of WP stochastic process until any ages in the range of MTT F regardless of the deterioration types. However, a little of differences have been seen at the ages in the neighborhood of MTTF, specially, for the linear and logarithmic deterioration of cumulative damages. For the accurate estimation of MRL of harbor structures, it may be desirable that the stochastic processes should be used to consider properly time-dependent uncertainties of damage deterioration. Nevertheless, the simplified model presented in this paper can be useful in the building of the MRL-based preventive maintenance planning for several kinds of harbor structures, because of which is not needed time-dependent history data about the damage deterioration of structures as mentioned above.

Habitat Quality Analysis and Evaluation of InVEST Model Using QGIS - Conducted in 21 National Parks of Korea - (QGIS를 이용한 InVEST 모델 서식지질 분석 및 평가 - 21개 국립공원을 대상으로 -)

  • Jang, Jung-Eun;Kwon, Hye-Yeon;Shin, Hae-seon;Lee, Sang-Cheol;Yu, Byeong-hyeok;Jang, Jin;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.1
    • /
    • pp.102-111
    • /
    • 2022
  • Among protected areas, National Parks are rich in biodiversity, and the benefits of ecosystem services provided to human are higher than the others. Ecosystem service evaluation is being used to manage the value of national parks based on objective and scientific data. Ecosystem services are classified into four services: supporting, provisioning, regulating and cultural. The purpose of this study is to evaluate habitat quality among supporting services. Habitat Quality Model of InVEST was used to analyze. The coefficients of sensitivity and habitat initial value were reset by reflecting prior studies and the actual conditions of protected areas. Habitat quality of 21 national parks except Hallasan National Park was analyzed and mapped. The value of habitat quality was evaluated to be between 0 and 1, and the closer it is to 1, the more natural it is. As a result of habitat quality analysis, Seoraksan and Taebaeksan National Parks (0.90), Jirisan and Odaesan National Parks (0.89), and Sobaeksan National Park (0.88) were found to be the highest in the order. As a result of comparing the area and habitat quality of 18 national parks except for coastal-marine national parks, the larger the area, the higher the overall habitat quality. Comparing the value of habitat quality of each zone, the value of habitat quality was high in the order of the park nature preservation zone, the park nature environmental zone, the park cultural heritage zone, and the park village zone. Considering both the analysis of habitat quality and the legal regulations for each zone of use, it is judged that the more artificial acts are restricted, the higher the habitat quality. This study is meaningful in analyzing habitat quality of 21 National Parks by readjusting the parameters according to the situation of protected areas in Korea. It is expected to be easy to intuitively understand through accurate data and mapping, and will be useful in making policy decisions regarding the development and preservation of protected areas in the future.

Early Growth Characteristics of Quercus rubra Associated with Soil Physicochemical Properties and Meteorological Factors in Six Regions of South Korea (토양 물리·화학적 성질 및 기상인자에 따른 국내 6개 지역의 루브라참나무 초기 생장 특성)

  • Hwang, Hwan Su;Kim, Tae Lim;Oh, Changyoung;Lim, Hyemin;Lee, Il Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.357-364
    • /
    • 2022
  • We investigated the early growth characteristics of Quercus rubra planted in six regions (Hwaseong, Yangpyeong, Pyeongchang, Samcheok, Chungju, and Gimje) in South Korea in relation to soil physicochemical properties and meteorological factors. Q. rubra (1-0) were planted at a density of 3,000 trees ha-1. The average height, root collar diameter (RCD), and volume of 8-year-old Q. rubra planted in 2014 were 3.52 m, 3.84 cm, and 0.0023 m3, respectively. The growth parameters of Q. rubra were the highest and lowest in Hwaseong and Pyeongchang, respectively. Correlation analysis among the soil physicochemical properties, meteorological factors, and plantation growth characteristics found that pH was the only soil factor negatively correlated with RCD, and the other soil factors were not significantly correlated with the growth characteristics. However, growth characteristics were positively correlated to average temperature from March to October and daily maximum temperature; and they were negatively correlated to altitude, topology, and the number of rainy days from March to October. In particular, the trees planted in Hwaseong area showed the best early growth characteristics because this area had the highest daily maximum temperature, the x average temperature from March to October, the low altitude, and it is located close to the foot of a mountain. In Pyeongchang, the early growth characteristics were negatively affected by winter cold damage because of the high altitude, low daily minimum temperature, and damage by wild animals. In Hwaseong, meteorological factors such as temperature and altitude were more highly correlated to growth characteristics of Q. rubra than the physicochemical soil properties. These results will provide useful information for determining suitable sites for Q. rubra plantations and for predicting early growth characteristics in response to environmental factors.

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.