• Title/Summary/Keyword: environmental indicator

Search Result 1,195, Processing Time 0.023 seconds

Comparison of Solidification Pre-treatment Methods for the Determination of δ13C of Dissolved Organic Carbon: Alkaline Persulfate Oxidation-Carbonate Precipitation vs. Freeze Drying (용존유기탄소의 δ13C : 분석시 고형화 전처리 방법 비교 알칼린 과황산칼륨산화 탄산침전과 동결건조)

  • Jeon, Byeong-Jun;Park, Hyun-Jin;Choi, Woo-Jung;Park, Yong-Se;Lee, Sang-Mo;Yoon, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2017
  • BACKGROUND: The carbon (C) isotope ratio (${\delta}^{13}C$) of dissolved organic C (DOC) is an indicator of water pollution source. In this study, the potential use of two pre-treatments for the ${\delta}^{13}C$ analysis, alkaline persulfate oxidation coupled with carbonate precipitation (precipitation) and freeze drying (drying), were compared to suggest a more feasible pre-treatment method. METHODS AND RESULTS: Two reference materials with different ${\delta}^{13}C$ values were used for the experiments; chemical grade glucose ($-12.0{\pm}0.02$‰) and pig manure compost extract ($-23.3{\pm}0.04$‰). In the precipitation method, the measured ${\delta}^{13}C$ values were consistently lower than the theoretically calculated values as dissolved $CO_2$ could not be removed due to the alkaline property of the reagents and the dissolution of air $CO_2$ into the alkaline solution. The drying method also resulted in more negative ${\delta}^{13}C$ than the calculated ${\delta}^{13}C$; however, the difference was systematic ($3.9{\pm}0.3$‰) and there was a strong correlation (${\delta}^{13}C_{calculated}=0.87{\times}{\delta}^{13}C_{measured}-0.624$, $r^2=0.98$) between the calculated and measured ${\delta}^{13}C$. Calibration of ${\delta}^{13}C$ using the relationship between the calculated and the measured ${\delta}^{13}C$ values produced reliable and accurate ${\delta}^{13}C$ values. CONCLUSION: Our results suggest that the drying method is more accurate pre-treatment method to minimize the influence of air $CO_2$ compared to the precipitation method for the determination of ${\delta}^{13}C$ of DOC.

A Review on Ocean Acidification and Factors Affecting It in Korean Waters (우리나라 주변 바다의 산성화 현황과 영향 요인 분석)

  • Kim, Tae-Wook;Kim, Dongseon;Park, Geun-Ha;Ko, Young Ho;Mo, Ahra
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.91-109
    • /
    • 2022
  • The ocean is a significant sink for atmospheric anthropogenic CO2, absorbing one-third of the total CO2 emitted by human activities. In return, oceans have experienced significant declines in seawater pH and the aragonite saturation state also called ocean acidification. This study evaluates the distribution of aragonite saturation state, an indicator to assess the potential threat from ocean acidification, by combining newly obtained data from the west coast of South Korea with previous datasets covering the Yellow Sea, East Sea, northern South China Sea, and southeast coast of South Korea. In general, offshore waters absorb atmospheric CO2; however, most of the collected water samples show aragonite oversaturation. On the southeast coast, the aragonite saturation state was significantly affected by river discharge and associated variables, such as freshwater input with nutrients, seasonal stratification, biological carbon fixation, and bacterial remineralization. In summer, hypoxia and mixing with relatively acidic freshwater made the Jinhae and Gwangyang Bays undersaturated with respect to aragonite, possibly threatening marine organisms with CaCO3 shells. However, widespread aragonite undersaturation was not observed on the west coast, which receives considerable river water discharge. In addition, occasional upwelling events may have worsened the ocean acidification in the southwestern part of the East Sea. These results highlight the importance of investigating site-specific ocean acidification processes in coastal waters. Along with the above-mentioned seasonal factors, the dissolution of atmospheric CO2 and the deposition of atmospheric acidic substances will continue to reduce the aragonite saturation state in Korean waters. To protect marine ecosystems and resources, an ocean acidification monitoring program should be established for Korean waters.

Benthic Environments and Macrobenthic Polychaete Community Structure in the winter of 2005-2006 in Gamak Bay, Korea (가막만의 2005년과 2006년 동계 저서환경 및 대형저서다모류군집구조)

  • Yoon, Sang-Pil;Kim, Youn-Jung;Jung, Rae-Hong;Moon, Chang-Ho;Hong, Sok-Jin;Lee, Won-Chan;Park, Jong-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.67-82
    • /
    • 2008
  • This study was performed to investigate changes in benthic environment and macrobenthic polychaete communities in Gamak Bay where various environmental quality improvement projects have been implemented in recent years. Field surveys were carried out in February, 2005 and February, 2006 and twenty stations were selected to explore whether or not there were between-year differences in biotic and abiotic variables. Of 10 environmental variables measured, only three variables including dissolved oxygen (DO), total ignition loss (IL), acid volatile sulfide (AVS) showed significant between-year differences. Specifically, IL and AVS were, on average, 1.5 and 3 times lower in 2006 compared to those in 2005, respectively, which was more pronounced in the northern part of the bay. A total of 95 polychaete species was sampled from the two sampling occasions. Between-year differences in the number of species, abundance, and diversity were varied from place to place. In the northern part of the bay, fewer species were found in 2006 rather than in 2005, but diversity increased in 2006 due to the reduction in dominance of a few species. On the contrary, in the central part of the bay, the number of species, abundance and diversity prominently increased in 2006. In the southern part of the bay, all the biological indices maintained similarly during the two years. Dominant species in 2005 were such opportunistic or organic pollution indicator species as Lumbrineris longifolia, Capitella capitata, Mediomastus californiensis, Pseudopolydora paucibranchiata, etc. and most of them were mainly distributed in the northern part of the bay and in the proximity of it. In 2006, however, Euchone alicaudata, L. longifolia, Paraprionospio pinnata, Flabelligeridae sp., etc. were dominant and distributed mainly in the central part of the bay. Multivariate analyses showed that the whole polychaete community could be divided into 5 groups reflecting the geographical positions of the sampling stations and temporal variation particularly in the northern part of the bay. According to the results of BIO-ENV procedure, TOC (${\rho}=0.52$) and AVS (${\rho}=0.49$) as a single variable best explained the polychaete community structure. The best combination was made by such variables as TOC, AVS, sorting coefficient, and water temperature (${\rho}=0.60$). In conclusion, between-year differences in biotic and abiotic variables imply that recent efforts for the environmental improvement produced positive influences on the benthic environment of Gamak Bay, particularly the northern part of the bay.

Analysis of sustainability changes in the Korean rice cropping system using an emergy approach (에머지 접근법을 이용한 국내 벼농사 시스템의 지속가능성 변화 분석)

  • Yongeun Kim;Minyoung Lee;Jinsol Hong;Yun-Sik Lee;June Wee;Jaejun Song;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.482-496
    • /
    • 2023
  • Many changes in the scale and structure of the Korean rice cropping system have been made over the past few decades. Still, insufficient research has been conducted on the sustainability of this system. This study analyzed changes in the Korean rice cropping system's sustainability from a system ecology perspective using an emergy approach. For this purpose, an emergy table was created for the Korean rice cropping system in 2011, 2016, and 202, and an emergy-based indicator analysis was performed. The emergy analysis showed that the total emergy input to the rice cropping system decreased from 10,744E+18 sej year-1 to 8,342E+18 sej year-1 due to decreases in paddy field areas from 2011 to 2021, and the proportion of renewable resources decreased by 1.4%. The emergy input per area (ha) was found to have decreased from 13.13E+15 sej ha-1 year-1 in 2011 to 11.89E+15 sej ha-1 year-1 in 2021, and the leading cause was a decrease in nitrogen fertilizer usage and working hours. The amount of emergy used to grow 1 g of rice stayed the same between 2016 and 2021 (specific emergy: 13.3E+09 sej g-1), but the sustainability of the rice cropping system (emergy sustainability index, ESI) continued to decrease (2011: 0.107, 2016: 0.088, and 2021: 0.086). This study provides quantitative information on the emergy input structure and characteristics of Korean rice cropping systems. The results of this study can be used as a valuable reference in establishing measures to improve the ecological sustainability of the Korean rice cropping system.

Assessing forest net primary productivity based on a process-based model: Focusing on pine and oak forest stands in South and North Korea (과정기반 모형을 활용한 산림의 순일차생산성 평가: 남북한 소나무 및 참나무 임분을 중심으로)

  • Cholho Song;Hyun-Ah Choi;Jiwon Son;Youngjin Ko;Stephan A. Pietsch;Woo-Kyun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.400-412
    • /
    • 2023
  • In this study, the biogeochemistry management (BGC-MAN) model was applied to North and South Korea pine and oak forest stands to evaluate the Net Primary Productivity (NPP), an indicator of forest ecosystem productivity. For meteorological information, historical records and East Asian climate scenario data of Shared Socioeconomic Pathways (SSPs) were used. For vegetation information, pine (Pinus densiflora) and oak(Quercus spp.) forest stands were selected at the Gwangneung and Seolmacheon in South Korea and Sariwon, Sohung, Haeju, Jongju, and Wonsan, which are known to have tree nurseries in North Korea. Among the biophysical information, we used the elevation model for topographic data such as longitude, altitude, and slope direction, and the global soil database for soil data. For management factors, we considered the destruction of forests in North and South Korea due to the Korean War in 1950 and the subsequent reforestation process. The overall mean value of simulated NPP from 1991 to 2100 was 5.17 Mg C ha-1, with a range of 3.30-8.19 Mg C ha-1. In addition, increased variability in climate scenarios resulted in variations in forest productivity, with a notable decline in the growth of pine forests. The applicability of the BGC-MAN model to the Korean Peninsula was examined at a time when the ecosystem process-based models were becoming increasingly important due to climate change. In this study, the data on the effects of climate change disturbances on forest ecosystems that was analyzed was limited; therefore, future modeling methods should be improved to simulate more precise ecosystem changes across the Korean Peninsula through process-based models.

The Analysis of Vegetation-Environment Relationships of Mt. Jungwangsan by TWINSPAN(Two-Way Indicator Species Analysis) and DCCA(Detrended Canonical Correspondence Analysis) Ordination (TWINSPAN과 DCCA에 의한 중왕산(中旺山)의 삼림군집(森林群集)과 환경(環境)의 상관관계(相關關係) 분석(分析))

  • Song, Ho Kyung;Kwon, Ki Won;Lee, Don Koo;Jang, Kyu Kwan;Woo, In Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.3
    • /
    • pp.247-254
    • /
    • 1992
  • Vegetational data obtained from 50 quadrats of Mt. Jungwangsan area were analysed by applying two multivariate methods : two-way indicator species analysis(TWINSPAN) for classification and detrended canonical correspondence analysis(DCCA) for ordination. DCCA technique allowed to extract the ordination axes that could be related to 15 environmental factors. The forest vegetation in Mt. Jungwangsan was classified into Quercus mongolica-Tilia amurensis, Quercus mongolica-Rhododendron schlippenbachii, Quencus mongolica-Kalopanax pictus, Quercus mongolica-Carpinus cordata, Quercus mongolica-Cornus controversa, Betula costata, Fraxinus mandshurica, and Ulmus laciniata communities according to the TWINSPAN. The relationships between the distribution of dominant species of forest vegetation and soil condition in Mt. Jungwangsan were investigated by analyzing elevation and soil nutrition gradient. Ulmus laciniata, Betula costata, and Fraxinus mandshurica forest were distributed in a ravine of the low elevation and in the good nutrition area of $Mg^{{+}{+}}$, total nitrogen, and $Ca^{{+}{+}}$, Quercus mongolica groups in the high elevation and in the poor nutrition area. Quercus mongolica-Kalopanax pictus forest of Quercus mongolica groups was distributed in the high elevation and in the good nutrition area of $Ca^{{+}{+}}$, C.E.C., $Mg^{{+}{+}}$, and total nitrogen, Quercus mongolica-Rhododendron schlippenbachii forest in the low elevation and poor nutrition area. Quercus mongolica-Carpinus cordata forest and Quercus mongolica-Cornus controversa forest were distributed in the medium elevation and medium nutrition area. The two dominant factors influencing community distribution were elevation and topography.

  • PDF

Spatial Analysis of Ecological Characteristics for Benthic Macroinvertebrate Community Structure in Lake Hoengseong Region (횡성호 일대 저서성 대형무척추동물 군집구조의 생태적 특성 분석)

  • Lee, Hwang-Goo;Jung, Sang-Woo;Choi, Jun-Kil
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.1
    • /
    • pp.46-56
    • /
    • 2012
  • Benthic macroinvertebrates were investigated in Hoeongseong Lake region from March to October 2010, Korea. Macroinvertebrate communities, composition of the functional feeding groups, habitiat oriented groups and the biological water quality were assessed above and below Hoeongseong Dam in the lake region. Six sites, two (St.1~2) above the lake, two (St. 3~4) into the lake, and two (St. 5~6) below the dam, were selected for quantitative (Surber sampler $30cm{\times}30cm$, mesh size 0.2 mm) and qualitative (Hand net) samplings of benthic macroinvertebrates. As a result, a total of 83 species belonging to 43 families, 17 orders, 8 classes, and 5 phyla were recognized. The EPT-group (50 spp. : 60.24%) that is major taxa or EPT-group plus Diptera (61 spp. : 73.49%) occupied most of benthic macroinvertebrates community. Based on quantitative sampling, the number of benthic maroinvertebrates above the lake was 2,399 individuals including 54 species, 28 families, 11 orders, 4 classes, and 4 phyla, whereas 510 individuals including 16 species, 12 families, 7 orders, 4 classes, and 3 phyla in the lake and 626 individuals including 62 species, 33 families, 13 orders, 6 classes, and 4 phyla below the dam were collected respectively. Dominance index was the highest, with 0.82-0.93 ($0.87{\pm}0.05$) in Hoeongseong lake (St. 3-4), diversity index was 3.04-3.16 ($3.10{\pm}0.06$), evenness index was 0.79-0.85 ($0.82{\pm}0.03$), and richness index was 7.27-8.52 ($7.90{\pm}0.63$), which were relatively higher below the dam sites. In the functional feeding groups, collector-gatherers and collector-filterers were the highest in the whole sites, and predators (Micronecta sedula) was appeared highly in the lake. Moreover, swimmers, burrowers, and clingers were considerably occupied in all collecting sites. The result of the DCA, similarity analysis, and MRPP were well reflective of the composition of lake and stream macroinvertebrates. ESB indicate that the lake sites were evaluated heavily polluted under priority improvement waters. Also, Semisulcospira gottschei, Ecdyonurus kibunensis, Epeorus pellucidus, Rhoenanthus coreanus, Stenelmis sp., and Cheumatopsyche brevilineata are considered as an indicator species above and below Hoeongseong Lake, whereas Macrobrachium nipponense and Micronecta sedula are indicated in the lake.

Wetland Habitat Assessement Utilizing TDI(Trophic Diatom Index) (부착돌말영양지수(TDI)를 활용한 습지환경 평가)

  • Kim, Seong-Ki;Choi, Jong-Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.525-538
    • /
    • 2019
  • The purpose of this study was to analyze the habitat status and species diversity of benthic diatoms and estimate the applicability of TDI (Trophic Diatom Index) to obtain the basic data for the identification and management of created wetlands in the Nakdong River. We observed a total of 38 families and 173 species of benthic diatom during the survey period, and spring and autumn showed a similar number of species of 156 and 154, respectively. The result of the SOM (Self-Organizing Map) analysis showed that the distribution of benthic diatom was sensitive to environmental factors such as nutrient concentration and rainfall in each wetland. The cluster 1 was characterized by the survey sites of autumn mostly and consisted of points of high TDI, although the nutrients such as total phosphorus and total nitrogen were low, and the species number and abundance of diatoms were low. Conversely, cluster 4 was characterized by the survey sites of spring mostly and consisted of points of low TDI, even though total nitrogen was high. Considering that most of the created wetlands had the reduced inflow and outflow, the increased flow rate in the summer lowers nutrient values in autumn, and the species number and abundance of benthic diatom decreases due to the increase of turbidity, which reduces the light penetrations to the substrates. On the contrary, the TDI value is low in spring because the low water level causes insufficient substrate surface to the benthic diatoms, and it is too early for the establishment and development of saprophilous species. Although various studies have used TDI as an indicator for evaluating the habitat environment and water quality, it is not a good evaluation indicator in this study since the nutrient concentration in the wetlands mostly high as they have a low flow rate and are close to the stagnant area. Nevertheless, additional periodic surveys that comprehensively reflect the fact that the summer rainfall and inflow/outflow regulating function might affect the species diversity and distribution of benthic diatoms are necessary.

Element Dispersion and Wall-rock Alteration from Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상의 모암변질과 원소분산 특성 연구)

  • Yoo, Bong-Chul;Chi, Se-Jung;Lee, Gil-Jae;Lee, Jong-Kil;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.713-726
    • /
    • 2007
  • The Daebong deposit consists of gold-silver-bearing mesothermal massive quartz veins which fill fractures along fault zones($N10{\sim}20^{\circ}W,\;40{\sim}60^{\circ}SW$) within banded gneiss or granitic gneiss of Precambrian Gyeonggi massif. Ore mineralization of the deposit is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing and transparent quartz vein(stage II) which is separated by a major faulting event. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and includes mainly sericite, quartz, and minor illite, carbonates and epidote. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.36 to 0.59($0.51{\pm}0.10$) and 0.66 to 0.73($0.70{\pm}0.02$), and belong to muscovite-petzite series and brunsvigite, respectively. Calculated $Al_{IV}-Fe/(Fe+Mg)$ diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH){_6}=0.00964{\sim}0.0291,\;a2(Mg_5Al_2Si_3O_{10}(OH){_6}= 9.99E-07{\sim}1.87E-05,\;a1(Mg_6Si_4O_{10}(OH){_6}=5.61E-07{\sim}1.79E-05$. It suggest that chlorite from the Daebong deposit is iron-rich chlorite formed due to decreasing temperature from $T>450^{\circ}C$. Calculated $log\;{\alpha}K^+/{\alpha}H^+,\;log\;{\alpha}Na^+/{\alpha}H^+,\;log\;{\alpha}Ca^{2+}/{\alpha}^2H^+$ and pH values during wall-rock alteration are $4.6(400^{\circ}C),\;4.1(350^{\circ}C),\;4.0(400^{\circ}C),\;4.2(350^{\circ}C),\;1.8(400^{\circ}C),\;4.5(350^{\circ}C),\;5.4{\sim}6.5(400^{\circ}C)\;and\;5.1{\sim}5.5(350^{\circ}C)$, respectively. Gain elements (enrichment elements) during wallrock alteration are $K_2O,\;P_2O_5,\;Na2O$, Ba, Sr, Cr, Sc, V, Pb, Zn, Be, Ag, As, Ta and Sb. Elements(Sr, V, Pb, Zn, As, Sb) represent a potentially tools for exploration in mesothermal and epithermal gold-silver deposits.

Analysis of Foodborne Pathogens in Food and Environmental Samples from Foodservice Establishments at Schools in Gyeonggi Province (경기지역 학교 단체급식소 식품 및 환경 중 식중독균 분석)

  • Oh, Tae Young;Baek, Seung-Youb;Koo, Minseon;Lee, Jong-Kyung;Kim, Seung Min;Park, Kyung-Min;Hwang, Daekeun;Kim, Hyun Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1895-1904
    • /
    • 2015
  • Foodborne illness associated with food service establishments is an important food safety issue in Korea. In this study, foodborne pathogens (Bacillus cereus, Clostridium perfringens, Escherichia coli, pathogenic Escherichia coli, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Vibrio parahaemolyticus) and hygiene indicator organisms [total viable cell counts (TVC), coliforms] were analyzed for food and environmental samples from foodservice establishments at schools in Gyeonggi province. Virulence factors and antimicrobial resistance of detected foodborne pathogens were also characterized. A total of 179 samples, including food (n=66), utensil (n=68), and environmental samples (n=45), were collected from eight food service establishments at schools in Gyeonggi province. Average contamination levels of TVC for foods (including raw materials) and environmental samples were 4.7 and 4.0 log CFU/g, respectively. Average contamination levels of coliforms were 2.7 and 4.0 log CFU/g for foods and environmental swab samples, respectively. B. cereus contamination was detected in food samples with an average of 2.1 log CFU/g. E. coli was detected only in raw materials, and S. aureus was positive in raw materials as well as environmental swab samples. Other foodborne pathogens were not detected in all samples. The entire B. cereus isolates possessed at least one of the diarrheal toxin genes (hblACD, nheABC, entFM, and cytK enterotoxin gene). However, ces gene encoding emetic toxin was not detected in B. cereus isolates. S. aureus isolates (n=16) contained at least one or more of the tested enterotoxin genes, except for tst gene. For E. coli and S. aureus, 92.7% and 37.5% of the isolates were susceptible against 16 and 19 antimicrobials, respectively. The analyzed microbial hazards could provide useful information for quantitative microbial risk assessment and food safety management system to control foodborne illness outbreaks in food service establishments.