• Title/Summary/Keyword: environmental impact potential

Search Result 651, Processing Time 0.029 seconds

A Method to Estimate the Cell Based Sustainable Development Yield of Groundwater (셀기반 지하수 개발가능량 산정기법)

  • Chung, Il-Moon;Kim, Nam Won;Lee, Jeongwoo;Na, Hanna;Kim, Youn-Jung;Park, Seunghyuk
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.635-643
    • /
    • 2014
  • Sustaiable development yield of groundwater in Korea has been determined according to 10 year drought frequency of groundwater recharge in the standard mid-sized watershed or relatively large area of district. Therefore, the evaluation of groundwater impact in a small watershed is hard to apply. Fot this purpose, a novel approach to estimate cell based sustainable development yield of groundwater (SDYG) is suggested and applied to Gyeongju region. Cell based groundwater recharge is computed using hydrological component analysis using the SWAT-MODFLOW which is an integrated surface water-groundwater model. To estimate the potential amount of groundwater development, the existing method which uses 10 year drought frequency rainfall multiplied by recharge coefficient is adopted. Cell based SDYGs are computed and summed for 143 sub-watersheds and administrative districts. When these SDYGs are combined with groundwater usage data, the groundwater usage rate (total usage / SDYG) shows wide local variations (7.1~108.8%) which are unseen when average rate (24%) is only evaluated. Also, it is expected that additional SDYGs in any small district could be estimated.

A field Study to Evaluate Cooling Effects of Green Facade under Different Irrigation Conditions - Focusing on modular green facade planted with Hedera helix L and Pachysandra terminalis - (관수조절에 의한 벽면녹화의 냉각효과 분석 연구- 아이비, 수호초를 식재한 모듈형 벽면녹화를 중심으로-)

  • Kim, Eun-Sub;Yun, Seok-Hwan;Piao, Zheng-gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Lee, Young-Gu;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.121-132
    • /
    • 2021
  • Green facade has a significant impact on building's energy performance by controlling the absorption of solar radiation and improving outdoor thermal comfort through shading and evapotranspiration. In particular, since high-density building does not enough green space, green facade, and rooftop greening using artificial ground plants are highly utilized. However, the level of cooling effect according to plant traits and irrigation control is different. Therefore, in this study, the cooling effect analyzed for a total of 4 cases by controlling the irrigation condition based on hedera and spurge. Although hedera under sufficient water had the highest cooling effect(-2℃~-4℃), had the lowest cooling effect under non-irrigation(+1.1℃~+4.4℃). In addition, hedera under sufficient water had cooling effect than hedera under non-irrigation(-1℃~-8.1℃) and in the case of spurge, it had cooling effect(-0.3℃~-7.8℃) more than non-irrigation. As a result of measuring the amount of transpiration according to the light intensity (PAR) and carbon dioxide concentration conditions, transpiration of hedera was higher than the spurge (respectively 0.63204mmolm-2s-1, 0.674367mmolm-2s-1). The difference in the cooling effect of the green facade under irrigation condition was significant. But the potential cooling effect of green facade according to plants species was different. Therefore, in order to maximize and continuously provide the cooling effect of green facade in urban areas, it is necessary to consider the characteristics of plants and the control of water supply through the irrigation system.

Ecological Characteristic of Warm Temperate Vegetation Distributed around Hakdong and Haegeumgang at Geojae Island (거제도 학동 및 해금강 일대에 분포하는 난대림 식생의 생태적 특성 연구)

  • Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.1
    • /
    • pp.72-86
    • /
    • 2022
  • This study was conducted to identify structural characteristics of the evergreen broad-leaved forests distributed in Hak-dong, Geojae island. For a survey, 52 sites were set up in areas with changes in the vegetation community or location environment where Cinnamomum yabunikkei, Neolitsea sericea, and Machilus thunbergii dominated or appeared in the canopy, sub-canopy, or shrub layer. The community classification with TWINSPAN identified the following communities: N. sericea-C. yabunikkei, C. yabunikkei-Camellia japonica, Ca. japonica, Quercus variabilis-Ca. japonica, Pinus thunbergii-Ca. japonica, Castanopsis sieboldii, P. thunbergii, and Platycarya strobilacea-Mallotus japonicus. Considering the result of the study that succession series of warm-temperate forest reflecting the latent natural vegetation is the transition of conifers and deciduous broad-leaved forest to evergreen broad-leaved forest, the communities predominated by the communities predominated by the communities predominated by P. thunbergii, Q. variabilis, and Pl. strobilacea are likely to transform into the evergreen forest predominated by N. sericea and C. yabunikkei. The sites where C. yabunikkei, N. sericea, and Castanopsis sieboldii are dominant in the canopy and sub-canopy layers are likely to maintain the status quo if there is no artificial disturbance. The relationship between the impact of the environmental factors and the vegetation distribution showed silt among the physical properties of the soil directly or indirectly affected it, which was judged to be due to the fact that it was located on a steep slope. The soil acidity (pH) was 5-5.84, electrical conductivity 0.047-0.139 dS/m, and organic matter content was 3.32-12.06%. Although there were differences by the colony, they were generally low.

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin (기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로)

  • Dae Eop Lee;Min Seok Kim;Hyun Ju Oh
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.107-117
    • /
    • 2024
  • The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.

Multivariate statistical study on naturally occurring radioactive materials and radiation hazards in lakes around a Chinese petroleum industrial area

  • Yan Shi;Junfeng Zhao;Baiyao Ding;Yue Zhang;Zhigang Li;Mohsen M.M.Ali;Tuya Siqin;Hongtao Zhao;Yongjun Liu;Weiguo Jiang;Peng Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2182-2189
    • /
    • 2024
  • The high-purity germanium gamma-ray spectrometer was used to measure the radioisotope in surface water of lakes in a Chinee petroleum industrial area. 92 samples were collected from surface water of three lakes. Activity concentrations of 232Th, 226Ra and 40K in three lakes were measured, distributed in the range of 101.8-209.4, 192.1-224.9 and 335.0-548.9 mBq/L, respectively. Results were all within the limits of WHO and China. Potential environmental and health risks were assessed by calculating some radiation hazard indicators, radium equivalent index, annual effective dose, excess lifetime cancer risk, absorbed dose rate, external hazard index, internal hazard index, annual gonadal dose equivalent, activity utilization index and representative gamma index, which ranged 0.38-0.54 Bq/L, 0.06-0.08 mSv/y, 0.23 × 10-3-0.31 × 10-3, 0.17-0.24 nGy/h, 1.01 × 10-3-1.46 × 10-3, 1.55 × 10-3-2.02 × 10-3, 1.16-1.66 μSv/y, 3.13 × 10-3-4.45 × 10-3 and 2.60 × 10-3-3.77 × 10-3. The results were all at acceptable levels, meaning no impact on human health. The relationship between the electrical conductivity of surface water and the activity concentration of 232Th, 226Ra and 40K was evaluated. The electrical conductivity value was 0.241-0.369 mS/cm, showing a significant correlation coefficient between 226Ra and 40K and electrical conductivity. Multivariate statistical methods were used to determine the relationship between the activity concentrations of 232Th, 226Ra, and 40K, radiation hazard indicators and electrical conductivity.

Assessment of Contamination and Sources Identification of Heavy Metals in Stream Water and Sediments around Industrial Complex (산업단지 유역 하천수와 퇴적물 내 중금속 오염도 평가 및 기원 추적 연구)

  • Jeong, Hyeryeong;Lee, Jihyun;Choi, Jin-Young;Kim, Kyung-Tae;Kim, Eun-Soo;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.179-191
    • /
    • 2019
  • Heavy metals in stream water and sediments around industrial complex were studied in order to assess the contamination and to identify the potential source of metals. High variability has been observed for both dissolved and particulate phases in stream water with coefficient of variation (CV) ranging from 1.3 to 2.8. The highest metal concentrations in both phases were observed in Gunja for Ni and Cu, in Jungwang for Zn and Pb and in Shiheung for Cd, respectively. These results indicate that the different metal sources could be existing. The concentrations of the heavy metals in sediments decreased in the order of Cu>Zn>Pb>Cr>Ni>As>Cd>Hg, with mean of 2,549, 1,742, 808, 539, 163, 17.1, 5.8, $0.07mg\;kg^{-1}$, respectively. Mean of metal concentrations(except for As) in sediments showed the highest values at Shiheung stream comparing with other streams. In sediments, the percent exceedance of class II grade that metal may potentially harmful impact on benthic organism for Cr, Ni, Cu, Zn, Cd, Pb was about 57%, 62%, 84%, 60%, 68%, 81% for all stream sediments, respectively. Sediments were classified as heavily to extremely polluted for Cu and Cd, heavily polluted for Zn and Pb, based on the calculation of Igeo value. About 59% and 35% of sediments were in the categories of "poor" and "very poor" pollution status for heavy metals. Given the high metal concentrations, industrial wastes and effluents, having high concentrations of most metals originated from the manufacture and use of metal products in this region, might be discharged into the stream through sewer outlet. The streams receive significant amounts of industrial waste from the industrial facilities which is characterized by light industrial complexes of approximately 17,000 facilities. Thus, the transport of metal loads through streams is an important pathway for metal pollution in Shihwa Lake.

An Empirical Study on Influencing Factors of Venture Firm's CSR: Focusing on Slack Resources and Growth Strategy (벤처기업의 사회적책임(CSR)활동의 영향요인에 관한 연구: 기업의 여유자원과 성장전략을 중심으로)

  • Jang, Dong-Hyun;Yeon, Ju-Han;Kim, Chun-Kyu
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.3
    • /
    • pp.27-40
    • /
    • 2024
  • This study empirically derives the factors affecting the practice of corporate social responsibility (CSR) of venture firms in Korea from the perspective of Slack Resource Theory and the company's growth strategy, and provides implications for future expansion of venture firm's CSR activities. In Korea, venture firms have grown into important players in the national economy since the late 1990s through social contributions such as economic value creation, job creation, and technological development. As venture companies grow in status, positive relationships with stakeholders and responsibility for environmental and social values are required. Now, CSR is becoming an important strategic choice for SMEs and venture firms. However, until now, CSR-related academic research has mainly focused on large or listed corporations, and there is not much research on SMEs or venture firms. In particular, research on the factors that lead venture companies to make important business decisions of participating in CSR activities is not there yet. This study applied logistic multiple regression analysis using the '2023 Survey on Venture Firms' conducted by the Ministry of SMEs and Startups. As a result of this study, operating profit, which is an available resources of venture companies, and government support, which is a potential resource, have a positive impact on venture firms's CSR activities. Also, business relationships with large corporations and expectation for future cooperation also have a positive impact on CSR activities as the determinants. On the other hand, it was analyzed that in venture firms where ownership and management are not separated, the higher the CEO's shareholding ratio, the more negatively it affects CSR activities. This study contributes academically as the first empirical study on the determinants of CSR activities of venture firms in Korea and provides implications that government policy support and collaboration between large corporations and venture firms are important in order to expand CSR activities of venture firms.

  • PDF

Comprehensive Review on the Implications of Extreme Weather Characteristics to Stormwater Nature-based Solutions (자연기반해법을 적용한 그린인프라 시설의 극한기후 영향 사례분석)

  • Miguel Enrico L. Robles;Franz Kevin F. Geronimo;Chiny C. Vispo;Haque Md Tashdedul;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.353-365
    • /
    • 2023
  • The effects of climate change on green infrastructure and environmental media remain uncertain and context-specific despite numerous climate projections globally. In this study, the extreme weather conditions in seven major cities in South Korea were characterized through statistical analysis of 20-year daily meteorological data extracted fro m the Korea Meteorological Administration (KMA). Additionally, the impacts of extreme weather on Nature-based Solutions (NbS) were determined through a comprehensive review. The results of the statistical analysis and comprehensive review revealed the studied cities are potentially vulnerable to varying extreme weather conditions, depending on geographic location, surface imperviousness, and local weather patterns. Temperature extremes were seen as potential threats to the resilience of NbS in Seoul, as both the highest maximum and lowest minimum temperatures were observed in the mentioned city. Moreover, extreme values for precipitation and maximum wind speed were observed in cities from the southern part of South Korea, particularly Busan, Ulsan, and Jeju. It was also found that extremely low temperatures induce the most impact on the resilience of NbS and environmental media. Extremely cold conditions were identified to reduce the pollutant removal efficiency of biochar, sand, gravel, and woodchip, as well as the nutrient uptake capabilities of constructed wetlands (CWs). In response to the negative impacts of extreme weather on the effectiveness of NbS, several adaptation strategies, such as the addition of shading and insulation systems, were also identified in this study. The results of this study are seen as beneficial to improving the resilience of NbS in South Korea and other locations with similar climate characteristics.

Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate (배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로)

  • Inhye Roh;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • Wastewater generated in the secondary battery production process contains lithium and high-concentration sulfate. Recently, as demand as demand for high-Ni precursors with high-energy density has surged, nickel emission is also a concern. Lithium and sulfate are not included in the current water pollutant discharge standard, so if they are not properly processed and discharged, the negative effect on future environment may be great. Therefore, in this study, the ecotoxicity of lithium, nickel, and sulfate, which are potential contaminants that can be discharged from the secondary battery production process, was evaluated using water flea (Daphnia magna) and luminescent bacteria (Aliivibrio fischeri). As a result of the ecotoxicity test, 24-hour and 48-hour D. magna EC50 values of lithium were 18.2mg/L and 14.5mg/L, nickel EC50 values were 7.2mg/L and 5.4mg/L, and sulfate EC50 values were 4,605.5mg/L and 4,345.0mg/L, respectively. In the case of D. magna, it was found that there was a difference in ecotoxicity according to the contaminants and exposure time (24 hours, 48 hours). Comparing the EC50 of D. magna for lithium, nickel, and sulfate, the EC50 of nickel at 24h and 48h was 39.6-37.2% compared to lithium and 0.1-0.2% compared to sulfate, which was the most toxic among the three substances. The difference appeared to be at a similarlevelregardless of the exposure time. The EC50 of sulfate was 253.0-299.7% and 639.5-804.6%, respectively, compared to lithium and nickel, showing the least toxicity among the three substances. The 30-minute EC50 values of luminescent bacteria forlithium, nickel, and sulfate were 2,755.8mg/L, 7.4mg/L, and 66,047.3mg/L,respectively. Unlike nickel, it was confirmed that there was a difference in sensitivity between D. magna and A. fischeri bacteria to lithium and sulfate. Studies on the mixture toxicity of these substances are needed.

Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed (기후변화와 토지이용변화가 도시화 진행 유역수문에 미치는 영향 평가)

  • Ahn, So Ra;Jang, Cheol Hee;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.567-577
    • /
    • 2015
  • Climate and land use changes have impact on availability water resource by hydrologic cycle change. The purpose of this study is to evaluate the hydrologic behavior by the future potential climate and land use changes in Anseongcheon watershed ($371.1km^2$) using SWAT model. For climate change scenario, the HadGEM-RA (the Hadley Centre Global Environment Model version 3-Regional Atmosphere model) RCP (Representative Concentration Pathway) 4.5 and 8.5 emission scenarios from Korea Meteorological Administration (KMA) were used. The mean temperature increased up to $4.2^{\circ}C$ and the precipitation showed maximum 21.2% increase for 2080s RCP 8.5 scenario comparing with the baseline (1990-2010). For the land use change scenario, the Conservation of Land Use its Effects at Small regional extent (CLUE-s) model was applied for 3 scenarios (logarithmic, linear, exponential) according to urban growth. The 2100 urban area of the watershed was predicted by 9.4%, 20.7%, and 35% respectively for each scenario. As the climate change impact, the evapotranspiration (ET) and streamflow (ST) showed maximum change of 20.6% in 2080s RCP 8.5 and 25.7% in 2080s RCP 4.5 respectively. As the land use change impact, the ET and ST showed maximum change of 3.7% in 2080s logarithmic and 2.9% in 2080s linear urban growth respectively. By the both climate and land use change impacts, the ET and ST changed 19.2% in 2040s RCP 8.5 and exponential scenarios and 36.1% in 2080s RCP 4.5 and linear scenarios respectively. The results of the research are expected to understand the changing water resources of watershed quantitatively by hydrological environment condition change in the future.