• Title/Summary/Keyword: environmental VOCs

Search Result 655, Processing Time 0.032 seconds

Characteristics of Atmospheric Concentrations of Toxic Volatile Organic Compounds in Korea (II) - Seasonal and Locational Variations (국내 대기 중 독성 휘발성 유기화합물의 오염 특성(II) -계절 및 지역적 변동)

  • 백성옥;김배갑;박상곤
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.207-217
    • /
    • 2002
  • This study was designed to investigate the characteristics of atmospheric concentrations of toxic volatile organic compounds (VOCs) in Korea. Target compounds included 1,3-butadiene, aromatics such as BTEX, and a number of carbonyl compounds. In this paper, as the second part of the study, the seasonal and locational concentrations of atmospheric VOCs were evaluated. Sampling was conducted seasonally at seven sampling sites. each of them representing a large urban area (commercial and residential), a small urban area (commercial and residential), an industrial area (a site within the complex and a residential), and a background place in Korea. In general, higher concentrations were found in the petro-chemical industrial site than other sites, while VOCs measured in commercial (heavy -traffic) sites were higher than residential sites. Seasonality of VOCs concentrations were not so much clear as other combustion related pollutants such as sulfur dioxide, indicating that the VOCs are emitted from a variety of sources, not only vehicle exhaust and point sources but fugitive emissions. Except the industrial site, the concentrations of VOCs measured in this study do not reveal any serious pollution status, since the levels did not exceed any existing ambient standards in the U.K. and/or Japan. However, the increasing number of petrol -powered vehicles and the rapid industrialization in Korea may result in the increased levels of VOCs concentrations in many large urban areas in the near future, if there is no appropriate programme implemented for the control of these compounds.

Characterization of Volatile Organic Compounds associated with Environmental Tobacco Smoke

  • Baek, Sung-Ok;Roger A. Jenkins
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.E
    • /
    • pp.41-58
    • /
    • 1998
  • In this study, a wide range of volatile organic constituents of environmental tobacco smoke (ETS) were determined using an environmental chamber, where ETS is the sole source of target compounds. ETS was generated in an environmental chamber by a number of different cigarettes, including the Kentucky reference cigarette and eight different commercial brands. More than 30 compounds were measured simultaneously for a total of twelve experimental runs. The target compounds are classified into three major classes, i.e. vapor phase ETS markers including 3-ethnylpyridine (3-EP) and nicotine, carbonyl compounds including formaldehyde, and volatile organic compounds (VOCs). The results from the chamber study were used to generate characterized ratios of selected VOCs to 3-EP, a vapor phase ETS marker. Emission factors for VOCs associated with ETS were also estimated. The characteristic ratios appeared to be generally in good agreement with published data obtained by environmental chamber studies similar to this study. This implies that the ratios may be useful for identifying and quantifying the impact of ETS as a source of target compounds in 'real world' indoor environments, which is affected by a complex mixture of multi-sources. The environmental chamber method described here provides a direct and reliable method to compare the ETS generated by different cigarettes. The method can also be applied to the simultaneous determination of many different ETS components.

  • PDF

Characterization of Volatile Organic Compounds Emission from Interior Materials of Railway Passenger Cabin (철도차량용 내장재의 휘발성유기화합물 방출특성 분석)

  • Cho, Young-Min;Park, Duck-Shin;Kwon, Soon-Bark;Park, Eun-Young
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.182-187
    • /
    • 2008
  • The environmental significance of indoor air quality is gaining more attention. Especially, the contamination of indoor air by volatile organic chemicals (VOCs) has become a serious environmental concern. We investigated the VOCs emissions from some interior materials used in the conventional railway passenger cabin. The seat cover and the flooring of cabins were used as testing materials, and they were put in a clean environmental chamber. The temperature and relative humidity was kept at $25{\pm}1^{\circ}C$ and $50{\pm}5%$, respectively. It was found that these interior materials emitted significant amount of VOCs under constantly ventilated condition. The flooring emitted more halogenated VOCs than the seat cover, because it is made of PVC, which contains many chlorine atoms. However, the emission gradually decreased over time. Because the VOCs emission from interior materials may threaten the health of passengers in the cabin, interior materials emitting less VOCs should be used.

VOCs Permeation Property of Composite Hollow Fiber Membranes (중공사 복합막을 이용한 다성분계 휘발성 유기 화합물 투과 특성)

  • Choi, Whee Moon;Cho, Soon Haing;Kim, Soon Tae;Lee, Chung Seop;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2013
  • To investigate the performance of VOC separation, composite hollow fiber membrane was prepared which composed of poly (ether imide) support prepared by phase separation method and poly (dimethylsiloxane) coating active layer. The performances of the membranes for the application of recovery process in terms of their morphology, gas permeance test for $N_2$ and $O_2$ gases. Durability against benzene, toluene and xylene was also investigated. And permeation test for multi-component VOCS through the membrane with different feed concentration and stage-cut were investigated. Permeance of PEI supported membrane and the membranes coated with PDMS decreased from 45,000 GPU to 63 GPU and 49,450 to 30 GPU for $N_2$ and $O_2$, respectively. Recovery efficiency and concentration of VOCs in permeate increased with decreasing stage-cut. VOCs concentration in permeate proportionally increased with increasing feed concentration but concentration ratio and recovery efficiency showed any noticeable changes with feed concentration change.

Catalytic Oxidation Conversion Characteristics of VOCs in Supercritical Fluid Media (초임계유체 반응매개상에서 VOCs의 촉매산화 전환특성)

  • 이승범;홍인권;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.69-76
    • /
    • 2001
  • The catalytic oxidation of volatile organic compounds (VOCs), which were benzene and toluene, was studied in the supercritical carbon dioxide($SC-CO_2$) media. In $SC-CO_2$ media, the deep oxidation conversion of VOCs was increased with the temperature and pressure. The deep oxidation conversion in SC -$CO_2$ media is better than that in air media at same pressure condition. This can be explained by the solubility of VOCs in $SC-CO_2$. The many intermediates produced by the partial oxidation of VOCs were detected from off-line samples. The intermediates were Identified as benzene, toluene, benzaldehyde, phenol, naphthalene, 1,1`-biphenyl, benzoic acid, 3-methylphenol, 1,1'-(1,2-ethanediyl)bis- benzene, 1,1'-(1,2-ethene- diyl)bis-benzene, anthracene, and so on. The amount of intermediates was decreased as the molar radio of oxygen to carbon dioxide was decreased. When the molar ratio of oxygen to carbon dioxide was 1 : 16, the deep conversion was kept constant. Thus, the catalytic oxidation process in $SC-CO_2$ media can be combined on-line with supercritical fluid extraction of environmental matrices and supercritical regeneration of used adsorbent. Thus, the nontoxic $SC-CO_2$ media process was suggested as the new VOCs control technology.

  • PDF

Development of the vac Source Profile using Collinearity Test in the Yeosu Petrochemical Complex (여수석유화학산단의 공선성 시험을 이용한 VOC 오염원 분류표 개발)

  • Jeon Jun-Min;Hur Dang;Hwang In Jo;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.315-327
    • /
    • 2005
  • The total of 35 target VOCs (volatile organic compounds), which were included in the TO-14, was selected to develop a VOCs' source profile matrix of the Yeosu Petrochemical Complex and to test its collinearity by singular value decomposition(SVD) technique. The VOCs collected in canisters were sampled from 12 different sources such as 8 direct emission sources (refinery, painting, wastewater treatment plant, incinerator, petrochemical processing, oil storage, fertilizer plant, and iron mill) and 4 general area sources (gasoline vapor emission, graphic art activity, vehicle emission, and asphalt paving activity) in this study area, and then those samples were analyzed by GC/MS. Initially the resulting raw data for each profile were scaled and normalized through several data treatment steps, and then specific VOCs showing major weight fractions were intensively reviewed and compared by introducing many other related studies. Next, all of the source profiles were tested in terms of degree of collinearity by SVD technique. The study finally could provide a proper VOCs' source profile in the study area, which can give opportunities to apply various receptor models properly including chemical mass balance (CMB).

Volatile Organic Compounds Concentrations and Its Personal Exposure in Indoor and Outdoor Environments in Summer (하계 실내 및 실외환경의 공기 중 휘발성 유기화합물 농도 및 개인노출)

  • 양원호;손부순;박종안;장봉기;박완모;김윤신;어수미;윤중섭;류인철
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.967-976
    • /
    • 2003
  • Volatile organic compounds (VOCs) are present in essentially all natural and synthetic materials from petrol to flowers. In this study, indoor and outdoor VOCs concentrations of houses, offices and internet-cafes were measured and compared simultaneously with personal exposures of each 50 participants in Asan and Seoul, respectively. Also, factors that influence personal VOCs exposure were statistically analyzed using questionnaires in relation to house characteristics, time activities, and health effects. All VOCs concentrations were measured by OVM passive samplers (3M) and analyzed with GC/MS. Target pollutants among VOCs were Toluene, o-Xylene, m/p-Xylene, Ethylbenzene, MIBK, n-Octane, Styrene, Trichloroethylene, and 1,2-Dichlorobenzene. Indoor and outdoor VOCs concentrations measured in Seoul were significantly higher than those in Asan except Ethylbenzene. Residential indoor/outdoor (I/O) ratios for all target compounds ranged from 0.94 to 1.51 and I/O ratios of Asan were a little higher than those of Seoul. Relationship between personal VOCs exposure, and indoor and outdoor VOCs concentrations suggested that time-activity pattern could affect the high exposure to air pollutant. Factors that influence indoor VOCs level and personal exposure with regard to house characteristics in houses were building age, inside smoking and house type. In addition insecticide and cosmetics interestingly affected the VOCs personal exposure. Higher exposure to VOCs might be caused to be exciting increase and memory reduction, considering the relationship between measured VOCs concentrations and questionnaire (p<0.05).

Analysis of VOCs Infiluencing Environment Factors Using Statistics in Apartment House (통계분석을 이용한 아파트내 휘발성유기화합물의 환경인자 분석)

  • Lee, Se-Haeng;Kim, Nan-Hee;Lee, Kyoung-Soek;Park, Kang-Soo;Park, Seung-Yeol;Kim, Do-Sool;Kang, Yeong-Ju;Kim, Eun-Sun;Kim, Dong-Su
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.435-445
    • /
    • 2012
  • The aim of this study is to understand the characteristics of volatile oranic compounds (VOCs) and provide information about the present Indoor Air Quality (IAQ) at residential apartments. All samples were collected in 60-min interval using the tenax absorption trap between May, 2011 and February, 2012. And the effects of environmental factors such as temperature, humidity and construction characteristics were analyzed in relation to the measured concentrations. The results of this study showed that the mean concentration of VOCs was lower than the Ministry of the Environment's standards for maintenance of indoor air quality. The correlation analysis showed that ethylbenzene and xylene (r=0.916, p<0.01), toluene and ehtylbenzene (r=0.810, p<0.01), toluene and xylene (r=0.803, p<0.01) and toluene and styrene (r=0.588, p<0.01) were significant. The result of regression analysis was found that the influenece factors associated with the concentration of VOCs were the age and location of the apartment, remodeling, the temperature and the season.

Patterns of the main VOCs concentration in ambient air around Shiwha Area (시화공단 지역의 주요 휘발성물질 농도 분포 특성)

  • Byeon, Sang-Hoon;Lee, Jeong-Geun;Kim, Jeong-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • In this study, we investigated the concentrations of volatile organic compounds (VOCs) in Shiwha area and compared the characteristics of both industrial area and residential area. The passive samplers were set 6 times each for a month in 21 locations at industrial and residential area to obtain 6 VOCs including benzene, trichlorobenzene, toluene, ethyl benzene, xylene and stylene. Above all, toluene was the most abundant VOCs in the ambient air both in industrial and residential area. Average TVOC concentration of industrial area was 1.86 times higher than that of residential area, and it was greatly reduced in winter compared with summer. Furthermore, the average BTEX concentrations showed that all concentrations of industrial area were 1.94~5.39 times higher than those of residential area except benzene which were similar to each other. In winter, the concentration of ethyl benzene and xylene were significantly decreased by comparing with summer: but benzene concentrations were increased. Also, BTEX relative ratio was as follows: toluene>benzene>ethylbenzene>xylene. Correlation coefficients among VOCs were confirmed that VOCs in ambient air of industrial area were generally more related to each other than that of residential area. On the whole, the concentrations of VOCs in industrial area were higher, and it seems to be potential that industrial area affects the distribution of VOCs to residential area.