• Title/Summary/Keyword: environmental DNA

Search Result 1,807, Processing Time 0.025 seconds

Eicosapentaenoic Acid (EPA) Biosynthetic Gene Cluster of Shewanella oneidensis MR-1: Cloning, Heterologous Expression, and Effects of Temperature and Glucose on the Production of EPA in Escherichia coli

  • Lee, Su-Jin;Jeong, Young-Su;Kim, Dong-Uk;Seo, Jeong-Woo;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.510-515
    • /
    • 2006
  • The putative EPA synthesis gene cluster was mined from the entire genome sequence of Shewanella oneidensis MR-1. The gene cluster encodes a PKS-like pathway that consists of six open reading frames (ORFs): ORFSO1602 (multi-domain beta-ketoacyl synthase, KS-MAT-4ACPs-KR), ORFSO1600 (acyl transferase, AT), ORFSO1599 (multi-domain beta-ketoacyl synthase, KS-CLF-DH-DH), ORFSO1597 (enoyl reductase, ER), ORFSO1604 (phosphopentetheine transferase, PPT), and ORFSO1603 (transcriptional regulator). In order to prove involvement of the PKS-like machinery in EPA synthesis, a 20.195-kb DNA fragment containing the genes was amplified from S. oneidensis MR-1 by the long-PCR method. Its identity was confirmed by the methods of restriction enzyme site mapping and nested PCR of internal genes orfSO1597 and orfSO1604. The DNA fragment was cloned into Escherichia coli using cosmid vector SuperCos1 to form pCosEPA. Synthesis of EPA was observed in four E. coli clones harboring pCosEPA, of which the maximum yield was 0.689% of the total fatty acids in a clone designated 9704-23. The production yield of EPA in the E. coli clone was affected by cultivation temperature, showing maximum yield at $20^{\circ}C$ and no production at $30^{\circ}C$ or higher. In addition, production yield was inversely proportional to glucose concentration of the cultivation medium. From the above results, it was concluded that the PKS-like modules catalyze the synthesis of EPA. The synthetic process appears to be subject to regulatory mechanisms triggered by various environmental factors. This most likely occurs via the control of gene expression, protein stability, or enzyme activity.

Molecular cloning and expression analysis of an interferon stimulated gene 15 from rock bream Oplegnathus fasciatus

  • Kim, Ju-Won;Kwon, Mun-Gyeong;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Baeck, Gun-Wook;Kim, Mu-Chan;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.23 no.2
    • /
    • pp.177-187
    • /
    • 2010
  • The Interferon stimulated gene 15 (ISG15) is strongly induced in many cell types by IFNs, viral infections, and double-stranded RNA (poly I:C). The ISG15 homologue cDNA was isolated from the rock bream LPS stimulated leukocyte cDNA library. The rock bream ISG15 homologue was found to consist of 833 bp encoding 157 amino acid residues. Compared with other known ISG15 peptide sequences, the most conserved regions of the rock bream ISG15 peptide were found to be the tandem ubiquitin-like domains and a C-terminal LRLRGG conjugating motif, characteristic of mammalian and non-mammalian ISG15 proteins. Phylogenetic analysis based on the deduced amino acid sequence revealed a homologous relationship between the ISG15 sequence of rock bream and that of Atlantic salmon, Atlantic cod, northern snake head, black rockfish and olive flounder. The expression of the rock bream ISG15 molecule was induced in the peripheral blood leukocytes (PBLs) from 1 to 24 h following poly I:C stimulation, with a peak at 3 h post-stimulation. The rock bream ISG15 gene was predominantly expressed in the PBLs, spleen and gill.

Assessment of Soil Microbial Communities in Carotenoid-Biofortified Rice Ecosystem

  • Sohn, Soo-In;Oh, Young-Ju;Kim, Byung-Yong;Lee, Bumkyu;Lee, Si-Myung;Oh, Sung-Dug;Lee, Gang-Seob;Yun, Doh-Won;Cho, Hyun-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.442-450
    • /
    • 2015
  • This study was conducted to investigate the effect of Psy-2A-CrtI (PAC), a genetically modified (GM) rice with enhanced ${\beta}$-carotene, on the soil microbial community. The soil used to cultivate GM rice and its wild-type, Nakdong, was analyzed for population density, denaturing gradient gel electrophoresis (DGGE), and pyrosequencing. It was found that the bacterial, fungal and actinomycetes population densities of the PAC soils were within the range of those of the non-GM rice cultivar, Nakdong. The DGGE banding patterns of the GM and non-GM soils were also similar, suggesting that the bacterial community structures were stable within a given month and were unaffected by the presence of a GM plant. The pyrosequencing result showed a temporal difference in microorganism taxon and distribution ratio, but no significant difference between GM and non-GM was found. The persistence of the transgene DNA in the plant and surrounding soil were investigated for different time periods. There were differences in the persistence within the plant depending on the gene, but they could not be detected after 5 weeks. Also the transgenes were not detected in the surrounding soil. These results indicate that soil microbial communities are unaffected by the cultivation of a PAC rice within the experimental time frame.

Identification of Pseudocercospora bolleana Associated with Angular Leaf Spot on Common Fig in Korea (무화과나무의 모무늬잎마름 증상에 관여하는 Pseudocercospora bolleana 동정)

  • Choi, In-Young;Choi, Young-Joon;Lee, Chong-Kyu;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.539-545
    • /
    • 2021
  • A cercosporoid fungus associated with angular leaf spots on the leaves of common fig (Ficus carica) in Korea is known to be morphologically similar to Passalora, but phylogenetically similar to Pseudocercospora. To clarify the ambiguity, six fig samples with angular leaf spots were collected and examined using a microscope, and two representative isolates were sequenced for multiple genes. The morphological characteristics were consistent with previous descriptions of Passalora bolleana. Molecular phylogenetic analysis based on the internal transcribed spacer and large subunit ribosomal DNA (rDNA) regions showed that the Korean isolates, as well as previously published Korean and Romanian isolates, formed a well-supported group in the clade of Pseudocercospora species. Consequently, the current Korean isolates should be correctly described as Pseudocercospora bolleana. Additionally, Pseudocercospora fici-caricae, a cercosporoid fungus previously described as a leaf pathogen on common fig in Taiwan and Korea, was also compared and discussed.

Identification of Puccinia iridis on Iris domestica in Korea (범부채에서 녹병균 Puccinia iridis의 동정)

  • Choi, In-Young;Choi, Young-Joon;Kim, Jin-Young;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.47 no.1
    • /
    • pp.89-94
    • /
    • 2019
  • A rust fungus on Iris domestica (syn. Belamcanda chinensis) from China was previously identified as Puccinia iridis. Accordingly, the identity of the rust fungus on the same host species in Korea needs to be reexamned. Morphological characteristics of the Korean materials matched with P. iridis. Molecular phylogenetic analyses based on internal transcribed spacer and large subunit rDNA sequences of two representative materials confirmed the identification by high sequence similarities of 100% and 99% with the reference sequences available in NCBI GenBank database. Phylogenetic tree inferred from neighbor-joining method proved them to be clustered in P. iridis group. Thus, the rust fungus on I. domestica in Korea was determined as P. iridis. On the other hand, a previous record that Puccinia belamcandae is another rust agent on I. domestica in Korea should be reconfirmed in future.

Confirmation of Coleosporium zanthoxyli on Zanthoxylum ailanthoides in Korea (머귀나무에서 녹병균 Coleosporium zanthoxyli의 확인)

  • Shin, Hyeon-Dong;Choi, Young-Joon;Lee, Chong-Kyu;Lee, Ho-Sang;Choi, Won-Il
    • The Korean Journal of Mycology
    • /
    • v.47 no.1
    • /
    • pp.83-88
    • /
    • 2019
  • A previous record of Coleosporium phellodendri on Zanthoxylum ailanthoides in Korea by Korean researchers was regarded as C. zanthoxyli by foreign scientists without further studies. To clarify the identity of a Coleosporium species occurring on Z. ailanthoides in Korea, we examined the morphological characteristics of eight materials and analyzed the internal transcribed spacer (ITS) and 28S large subunit (LSU) rDNA regions of three representative specimens which were collected in Korea and deposited in the Mycological Herbarium at Korea University (Seoul, Korea). All specimens collected in Korea were morphologically and molecularly determined to be C. zanthoxyli. Therefore, this is the first confirmed report on the presence of C. zanthoxyli on Z. ailanthoides in Korea.

Adverse Effect of Nonylphenol on the Reproductive System in F2 Male Mice : A Qualitative Change?

  • Kim, Yong-Bin;Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.255-262
    • /
    • 2019
  • Previously, we reported negative effects of low-dose nonylphenol (NP) exposure on the reproductive organs of F1 male mice. In the present study was further investigated the endocrine disrupting effect of NP exposure to F2 generation male mice. Mice were divided into 2 groups; (1) CON, control animals and (2) NP-50 ($50{\mu}g/L$), animals were treated with NP via drinking water. NP exposures were continuously conducted from parental pre-mating period until the postnatal day (PND) 55 of F2 offsprings. Mice were sacrificed on PND 55 and the reproductive tissue weights were measured. The initial (at PND 21) and terminal (PND 55) body weights of the NP-50 group animals were not significantly different from those of control group animals. NP exposure fail to induce a significant weight change of the testes, seminal vesicle and prostate except absolute epididymal weight (p<0.05). However, pathohistological studies revealed that NP-treated F2 animals showed evident decrease in seminiferous tubule diameters, reduced luminal area and number of germ cells. Also, sloughing morphologies in the tubules were notable. In the caudal epididymis, fewer mature sperms and swollen epithelial cells were found in the NP-treated group. The present study demonstrated that the subchronic low-dose NP exposure induced pathohistological abnormalities in testis and epididymis of F2 mice, and we assumed that these 'qualitative' changes in reproductive tissues could be derived from the epigenetic modifications such as DNA methylation, histone modification, altered DNA accessibility and chromatin structure. Further studies are needed to achieve a better understanding on the multi- or trans-generational effects of NP on the reproductive health and a human application.

Pucciniastrum hydrangeae-petiolaris, a Newly Found Rust Fungus on Hydrangea petiolaris in Korea (국내 미기록 등수국 녹병균 Pucciniastrum hydrangeae-petiolaris)

  • Lee, Jae Sung;Choi, Young-Joon;Choi, Byoung-Ki;Jung, Bok-Nam;Park, Ji-Hyun;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.49 no.1
    • /
    • pp.119-125
    • /
    • 2021
  • Hydrangea petiolaris, belonging to the family Hydrangeaceae, is a vine plant distributed in Ulleung, Jeju, and other southern islands of Korea. In October 2017, a rust fungus was discovered on H. petiolaris in Jeju Island, Korea. To identify the rust fungus, we performed a morphological examination and molecular phylogenetic analysis of the internal transcribed spacer and 28S large subunit rDNA sequences. As a result, the fungus was identified as Pucciniastrum hydrangeae-petiolaris, consistent with previous reports from Japan and Russia, but showed a significant phylogenetic distance from Pucciniastrum hydrangeae reported on Hydrangeae spp. in North America. This is the first record of P. hydrangeae-petiolaris on H. petiolaris in Korea.

Discovery of novel haplotypes from wild populations of Kappaphycus (Gigartinales, Rhodophyta) in the Philippines

  • Roleda, Michael Y.;Aguinaldo, Zae-Zae A.;Crisostomo, Bea A.;Hinaloc, Lourie Ann R.;Projimo, Vicenta Z.;Dumilag, Richard V.;Lluisma, Arturo O.
    • ALGAE
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • As the global demand for the carrageenophyte Kappaphycus is steadily increasing, its overall productivity, carrageenan quality, and disease resistance are gradually declining. In the face of this dilemma, wild Kappaphycus populations are viewed as sources of new cultivars that could potentially enhance production; therefore, assessment of their diversity is crucial. This study highlights the morphological and genetic diversity of wild Kappaphycus species obtained from two sites in the Philippines. Nucleotide alignments of available 5' region of the mitochondrial cytochrome c oxidase subunit I (COI-5P) and cox2-3 spacer sequences of Kappaphycus confirmed the presence of K. alvarezii in Guiuan, Eastern Samar and K. striatus in Bolinao, Pangasinan. Based on the concatenated sequences of the COI-5P and the cox2-3 spacer, nine novel haplotypes were observed along with other published haplotypes. However, there was no relationship between haplotype and morphology. These newly recognized haplotypes indicate a reservoir of unutilized wild genotypes in the Philippines, which could be taken advantage of in developing new cultivars with superior traits. DNA barcodes generated from this study effectively expand the existing databank of Kappaphycus sequences and can provide insights in elucidating the genetic diversity of Kappaphycus species in the country.

Bacterial Community and Diversity from the Watermelon Cultivated Soils through Next Generation Sequencing Approach

  • Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Kim, Ki Young;Park, Hyo Bin;Kim, Ki Jung;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.521-532
    • /
    • 2021
  • Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.