• Title/Summary/Keyword: environment temperature

Search Result 8,470, Processing Time 0.031 seconds

A Study on the Temperature Variation Rate and Temperature Controlling Effect of Parks and Rivers in a City (도시 내 공원과 하천의 기온변화율과 기온완화효과에 관한 연구)

  • Lee, Kang-Guk;Kim, Tae-Woo;Seo, Won-Duck;Hong, Won-Hwa
    • KIEAE Journal
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 2011
  • For urban development, natural covering area such as urban green or river is more rapidly reducing than artificial surface covering area like concrete or asphalt, so thermal environment in a city is being drastically deteriorated. Recently, since people recognize the importance of parks or rivers in a city which play roles as an environmental buffer in it, many studies and policies consider how to improve the life quality of citizens and urban environment. This study aims to examine the status of thermal environment variation in the parks and rivers of the city which is the subject of this research and provide foundational data for urban environment plans through research on temperature variation rate and temperature controlling effect.

A Study on the Fatigue Crack Growth Behavior in Ti-6Al-4V Alloy(I) (Ti-6Al-4V의 피로균열성장거동에 관한 연구(I))

  • 우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.52-57
    • /
    • 2001
  • Fatigue crack growth behaviour of Ti-6A-4V alloy is investigated in air and salt solution environment at room temperature and $200^{\circ}C$. Fatigue crack growth rate is blown to be fast for the formation of corrosive product in hot salt environment. For the effect on corrosion fatigue crack growth behaviour of region II. fatigue crack growth rate in atmosphere had a little gap to both case, $200^{\circ}C$ and room temperature. However, it showed very fast tendency in salt corrosive atmosphere, and it was remarkably accelerated in $200^{\circ}C$ temperature salt environment. When $\Delta$K was approximately 30MPa(equation omitted), fatigue crack growth rate had a little difference between at room temperature and at $200^{\circ}C$ high temperature, however in case of salt corrosive environment the room temperature was 3.5 times Inter and $200^{\circ}C$ high temperature for 16 times than air environment respectively.

  • PDF

Thermal Environment Analysis of a Classroom by CFD Simulation to Determine Optimal Temperature Sensor Position in Ceiling Type Air-Conditioning System (천정형 에어컨 온도센서의 최적 위치 결정을 위한 교실의 CFD 열환경 분석)

  • Li, M.H.;Kim, D.G.;Kum, J.S.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.43-49
    • /
    • 2006
  • Nowadays, the thermal environments of classrooms are usually adjusted by the ceiling type air-conditioning system with a temperature sensor installed on inlet of an air-conditioner. However, it is not clear that the conventional temperature sensor position is proper to satisfy both thermal comport and energy saving in summer especially. Therefore, this study is aimed at finding out the best position of the temperature sensor on the purpose of the comfort thermal environment and energy saving. The different 5 positions for the temperature sensor are supposed in this paper to analyze thermal environment by CFD. From the analysis through the CFD simulations, the best position of the temperature sensor satisfying for both comfort thermal environment and energy saving is obtained.

  • PDF

Change in the Plant Temperature of Tomato by Fogging and Airflow in Plastic Greenhouse (포그분사 및 공기유동에 의한 온실재배 토마토의 엽온 변화)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • To investigate the influence of surrounding environment on the plant temperature and examine the effect of plant temperature control by fogging and airflow, plant temperature of tomato, inside and outside air temperature and relative humidity, solar radiation and wind speed were measured and analyzed under various experimental conditions in plastic greenhouse with two-fluid fogging systems and air circulation fans. According to the analysis of plant temperature and the change of inside and outside air temperature in each condition, inside air temperature and plant temperature were significantly higher than outside air temperature in the control and shading condition. However, in the fogging condition, inside air temperature was lower or slightly higher than outside air temperature. It showed that plant temperature could be kept with the temperature similar to or lower than inside air temperature in fogging and airflow condition. To derive the relationship between surrounding environmental factor and plant temperature, we did multiple regression analysis. The optimum regression equation for the temperature difference between plant and air included solar radiation, wind speed and vapor pressure deficit and RMS error was $0.8^{\circ}C$. To investigate whether the fogging and airflow contribute to reduce high temperature stress of plant, photosynthetic rate of tomato leaf was measured under the experimental conditions. Photosynthetic rate was the highest when using both fogging and airflow, and then fogging, airflow and lastly the control. So, we could assume that fogging and airflow can make better effect of plant temperature control to reduce high temperature stress of plant which can increase photosynthetic rate. It showed that the temperature difference between plant and air was highly affected by surrounding environment. Also, we could estimate plant temperature by measuring the surrounding environment, and use it for environment control to reduce the high temperature stress of plant. In addition, by using fogging and airflow, we can decrease temperature difference between plant and air, increase photosynthetic rate, and make proper environment for plants. We could conclude that both fogging and airflow are effective to reduce the high temperature stress of plant.

Water-Temperature Prediction of Streams Entering into Imha Reservoir using Multi-Regnssion Method (다중회귀분석을 이용한 임하호 유입하천의 수온예측)

  • Yi, Yong-Kon;Lee, Sanguk;Koh, Deuk Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.919-925
    • /
    • 2006
  • The regression models for the water temperatures of Ban Byeon Stream and Yong Jeon stream were developed using multi-regression method. It was also investigated that the applicability of the stream temperature prediction to two-dimensional numerical simulation to predict the vertical water temperature in Imha Reservoir. Air temperature and dew point as independent variables were selected to be applicable to cases with the different variation of flow rates. The data division of water temperature using a cutoff flow rate of $20m^3/s$ was found to reduce the prediction error of the stream temperature. The mean absolute percent error of the numerical simulation results of the vertical water temperature in Imha Reservoir using the regression models was 11%, which was only 4.3% lager than the simulation result using the measured stream temperature. Therefore, the regression models of the stream temperatures using multi-regression method applied in this study could be applied to predict the vertical water temperature in Imha Reservoir with a good accuracy.

Study on the Subway Platform Thermal Environment for using Natural Energy (자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구)

  • KIM, Hoe-Ryul;KIM, Dong-Gyu;KUM, Jong-Soo;CHUNG, Yong-Hyun;PARK, Sung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

Measurements of Magnetic Properties of Electromagnetic Actuator in High-Temperature Environment

  • Noh, M.;Gi, M.J.;Kim, D.;Park, Y.W.;Lee, J.;Kim, J.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.86-90
    • /
    • 2015
  • Electromagnetic actuators are versatile and able to meet demanding requirements, such as operation in very low or very high temperatures. When the actuator is used in a high-temperature environment up to $500^{\circ}C$, we need to know how the force-producing capability of the actuator is affected by the operating temperature. Specifically, it is necessary to know the temperature-dependence of magnetic properties that determine the mechanical forces. In this paper, we measure the changes in magnetic properties of SUS410 material in high-temperature environment. We also devise a novel signal processing technique to remove the integration drift. At the field strength of 18,000 A/m, we found that the flux density at $500^{\circ}C$ is decreased by 26%, compared to the result at room temperature. Therefore, the actuator must be sized appropriately, if it is to operate in high-temperature settings.

The Thermal Environment and Thermal Reaction in the Radiant Floor Heating System (바닥난방의 온열환경 및 열적반응에 관한 연구 -방바닥에 누운 상태를 중심으로-)

  • 이무진
    • Journal of the Korean housing association
    • /
    • v.10 no.1
    • /
    • pp.75-84
    • /
    • 1999
  • The purpose of this study is to identify the characteristics of the thermal environment, and to analyze the relationship between the thermal reactions and the skin temperatures in the lying position in the radiant floor heating system. The results are as follows: 1) The globe temperature was nearly equal to the operative temperature in the room. 2) The floor surface temperature and the globe temperature were 26.4$^{\circ}C$ and 23.6$^{\circ}C$, respectively when the whole body temperature was at neutral point. 3) The mean temperature of the six skin parts was 31.3$^{\circ}C$ (cold thermal environment); 34.1$^{\circ}C$ (neutral thermal environment); 35.1$^{\circ}C$ (hot thermal environment).

  • PDF

Feature of the Change of the Arsenic Ionic State and Prediction of Toxicity in Aqueous Environment depending on Temperature Condition (온도 조건에 따른 비소 이온의 수중 상태 변화 특성 및 독성 예측)

  • Won, Yu-Ra;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.176-183
    • /
    • 2013
  • The variation of the stable region of arsenic compounds in aqueous environment with temperature has been investigated by constructing the Pourbaix diagram of arsenic at different temperatures. The standard potential corresponding to the boundary between arsenic compounds with different charge valence was estimated to be decreased with temperature, which means the stability of arsenic compound with +5 charge valence increases. The distribution diagram of the most highly oxidized arsenic compound showed that arsenic acid is formed at higher pH and arsenate is generated at lower pH as temperature rises. The aquatic toxicity due to arsenic compounds was considered to be decreased with temperature in the neutral pH condition based on the $LD_T$ value defined in this study.

Analysis of Skin Temperature and Body Movements depend on the Thermal Environment during sleep (수면시 온열환경에 따른 피부온도 및 신체움직임 분석)

  • 임은숙;금종수;이기섭;조관식;배동석;김동규;최광환;최호선
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.3-6
    • /
    • 1999
  • There are numerous studies on relations between sleep and environmental factors such as noise, illumination and thermal conditions. Sleep is affected by the thermal environment. This study describes influence of thermal environment on skin temperature, sleep patterns and body movements using physiological and psychological measurements. The results are as follows: 1) The fluctuations of room temperature during sleep appeared skin temperature variations. The more room temperature is high, the more skin temperature is high in 22$^{\circ}C$, 26$^{\circ}C$, 30$^{\circ}C$. 2) A significant relation between body movement and skin temperature was found within room temperature. Under room temperature conditions of 22$^{\circ}C$, 26$^{\circ}C$, 30$^{\circ}C$, there were significantly higher rates of body movement in the room temperature(30$^{\circ}C$). 3) Uncomfortable after sleep in thermal environment is mostly under high temperature(30$^{\circ}C$), and they are about fatigue due to not enough sleeping. 4) The degree of indoor thermal temperature with sufficient sleeping is in 22.8 ∼ 27.8$^{\circ}C$.

  • PDF