본 논문에서는 정보 이론의 maximum entropy Principle을 이용하여 중성자속 분포를 재생하는 새로운 방법을 시도하였다. 어떤 대상에 대한 부분적인 정보가 있을 때, 이 정보의 한도 내에서 entropy를 최대화시키는 확률 분포는 가장 객관적인 것이 된다. Nodal method계산결과인 평균 중성자속과 current의 값을 prior information으로 삼고, 핵 연료 집합체의 경계에서의 중성자속 분포를 확률의 형태로 변환해서 확률로써 다룬다. Prior information의 한도 내에서 entropy를 최대화시키는 경계에서의 확률 분포를 구하면 핵연료 집합체의 경계에서의 중성자속 분포가 구해지는데, 이것을 경계조건으로 heterogeneous assembly calculation을 행하여 세부적인 중성자속 분포를 구한다. 이 새로운 방법을 몇 개의 benchmark problem assembly에 응용해 본 결과, 노심의 안쪽 부분에서는 이 방법이 form function method에 의한 것과 비슷한 정확도를 보였고 바깥 부분에서는 다소 큰 오차를 보였다. 본 논문에서는 surface-averaged neutron current를 prior in-formation에 포함시키지 못했는데, 이것을 포함시키면 결과가 훨씬 개선 될 것으로 보인다.
영상의 세세한 부분에 대한 표현 정확도를 나타내는 엔트로피는 일반적으로 영상이 가진 그레이 레벨의 도수, 즉, 히스토그램을 바탕으로 얻어지며, 영상의 이진화를 위한 지표로 널리 사용되어 왔다. 본 논문에서는 이러한 영상 이진화를 위한 엔트로피 계산에 있어서 히스토그램이 아닌 그레이 레벨의 분산을 이용한 엔트로피를 바탕으로 그레이 영상을 이진화하는 알고리즘을 제안하고, 9개의 시험 영상에 대한 실험과 기존의 영상 이진화 기법인 오츠 기법 및 히스토그램을 이용한 엔트로피 기반의 임계값 결정법과의 비교 및 검토를 통하여 제안된 기법의 효용성을 보인다.
Shannon entropy is one of the widely used randomness measures especially for cryptographic applications. However, the conventional entropy tests are less sensitive to the inter-bit dependency in random samples. In this paper, we propose new online randomness test schemes for true random number generators (TRNGs) based on the mutual information between consecutive ${\kappa}$-bit output blocks for testing of inter-bit dependency in random samples. By estimating the block entropies of distinct lengths at the same time, it is possible to measure the mutual information, which is closely related to the amount of the statistical dependency between two consecutive data blocks. In addition, we propose a new estimation method for entropies, which accumulates intermediate values of the number of frequencies. The proposed method can estimate entropy with less samples than Maurer-Coron type entropy test can. By numerical simulations, it is shown that the new proposed scheme can be used as a reliable online entropy estimator for TRNGs used by cryptographic modules.
Communications for Statistical Applications and Methods
/
제12권1호
/
pp.125-137
/
2005
Many discriminant analysis models for binary data have been used in real applications, but none of the classification models dominates in all varying circumstances(Asparoukhov & Krzanowski(2001)). Lee and Hwang (2003) proposed a new classification model by using multinomial distribution with the maximum entropy estimation method. The model showed some promising results in case of small number of variables, but its performance was not satisfactory for large number of variables. This paper explores to use the iterative cross entropy minimization estimation method in replace of the maximum entropy estimation. Simulation experiments show that this method can compete with other well known existing classification models.
International Journal of Advanced Culture Technology
/
제1권2호
/
pp.1-6
/
2013
In this paper, we evaluate performance of existing similarity measurement metric and propose a novel method using user's preferences information entropy to reduce MAE in memory-based collaborative recommender systems. The proposed method applies a similarity of individual inclination to traditional similarity measurement methods. We experiment on various similarity metrics under different conditions, which include an amount of data and significance weighting from n/10 to n/60, to verify the proposed method. As a result, we confirm the proposed method is robust and efficient from the viewpoint of a sparse data set, applying existing various similarity measurement methods and Significance Weighting.
군집화는 객체들의 특성을 분석하여 유사한 성질을 갖고 있는 객체들을 동일한 집단으로 분류하는 방법이다. 전자 상거래 자료처럼 차원 수가 많고 누락 값이 많은 자료의 경우 입력 자료의 차원축약, 잡음제거를 목적으로 SVD를 사용하여 군집화를 수행하는 것이 효과적이지만, SVD를 통해 변환된 자료는 원래의 속성 정보를 상실하기 때문에 군집 결과분석에서 원본 속성의 가치 해석이 어렵다. 따라서 본 연구는 군집화 수행 후 엔트로피 가중치 및 SVD를 이용하여 군집의 중요한 속성을 발견하기 위한 군집 특징 선택 기법 ENTROPY-SVD를 제안한다. ENTROPY-SVD는 자료의 속성들과 유사객체 군과의 묵시적인 은닉 구조를 활용하기 위하여 SVD를 이용하고 유사객체 군에 포함된 응집도가 높은 속성들을 발견하기 위하여 엔트로피 가중치를 사용한다. 또한 ENTROPY-SVD를 적용한 모델 기반의 협력적 여과기법의 추천 시스템 CFS-CF를 제안하고 그 효용성 및 효과를 평가한다.
The relations of fuzzy entropy, distance measure, and similarity measure are discussed in this paper. For the purpose of reliable signal selection, the fuzzy entropy is proposed by a distance measure. Properness of the proposed entropy is verified by the definition of the entropy measure. Fourier and Wavelet transform are applied to the stator current signal to obtain the fault features of an induction motor. Membership functions for 3-phase currents are obtained by the Bootstrap method and Central Limit Theorem. Finally, the proposed entropy is applied to measure the fault signal of an induction machine, and the fuzzy entropy values of phase currents are illustrated.
Transmission planning is an important part of power system planning to meet an increasing demand for electricity. The objective of transmission expansion is to minimize operational and construction costs subject to system constraints. There is inherent uncertainty in transmission planning due to errors in forecasted demand and fuel costs. Therefore, transmission planning process is not reliable if the uncertainty is not taken into account. The paper presents a systematic method to find the optimal location and amount of transmission expansion using Cross-Entropy (CE) incorporating uncertainties about future power system conditions. Numerical results are presented to demonstrate the performance of the proposed method.
본 연구에서 우리는 모듈의 의존관계와 저자 엔트로피(Author Entropy) 정보를 이용하여 소프트웨어 모듈-뷰를 복원하는 새로운 소프트웨어 클러스터링 기법을 제안한다. 해당 기법은 우선 구조적 및 논리적 의존관계 정보를 기준으로 소프트웨어 모듈을 클러스터링한 후, 모듈 별 저자 엔트로피를 이용하여 일부 선택된 모듈을 클러스터 결과로부터 이전한다. 제안된 기법의 평가를 위해 참(ground-truth) 모듈-뷰가 알려진 오픈소스 프로젝트들에 적용하여 MoJoFM 값을 구하였다. 이와 함께 기존에 연구된 모듈-뷰 복원 기법들의 MoJoFM값과 비교하여, 제안된 기법이 소프트웨어 모듈-뷰 복원에 보다 효과적임을 보였다.
본 논문은 음성인식 시스템에서 정확도를 높이기 위해 후처리 단계에서 후보 단어들의 엔트로피 정보를 이용하였다. 기존의 우도비 검출방법은 음성 데이터에 따라 음성인식 시스템의 성능이 변하고 N개의 후보단어들의 우도값이 비슷하여 오인식 발생확률이 높았다. 그러나 본 눈문에서는 각 후보 단어들의 엔트로피 값보다 인식대상 단어 외의 단어들의 엔트로피 값이 상대적으로 낮은 후보를 거절하는 후처리 방법을 사용하여 음성 데이터에 독립적이면서도 변별력을 높인 정확한 음성인식 시스템을 얻을 수 있었다. 실험 결과 본 논문에서 제안하는 엔트로피에 의한 후처리 방법은 우도비에 의한 방법보다 인식 시스템의 성능을 false alarm이 20%일 때 최대 3.6% 향상시킬 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.