• 제목/요약/키워드: entropy method

검색결과 872건 처리시간 0.021초

노달방법의 중성자속 분포 재생 문제에의 최대 엔트로피 원리에 의한 새로운 접근 (A New Formulation of the Reconstruction Problem in Neutronics Nodal Methods Based on Maximum Entropy Principle)

  • Na, Won-Joon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제21권3호
    • /
    • pp.193-204
    • /
    • 1989
  • 본 논문에서는 정보 이론의 maximum entropy Principle을 이용하여 중성자속 분포를 재생하는 새로운 방법을 시도하였다. 어떤 대상에 대한 부분적인 정보가 있을 때, 이 정보의 한도 내에서 entropy를 최대화시키는 확률 분포는 가장 객관적인 것이 된다. Nodal method계산결과인 평균 중성자속과 current의 값을 prior information으로 삼고, 핵 연료 집합체의 경계에서의 중성자속 분포를 확률의 형태로 변환해서 확률로써 다룬다. Prior information의 한도 내에서 entropy를 최대화시키는 경계에서의 확률 분포를 구하면 핵연료 집합체의 경계에서의 중성자속 분포가 구해지는데, 이것을 경계조건으로 heterogeneous assembly calculation을 행하여 세부적인 중성자속 분포를 구한다. 이 새로운 방법을 몇 개의 benchmark problem assembly에 응용해 본 결과, 노심의 안쪽 부분에서는 이 방법이 form function method에 의한 것과 비슷한 정확도를 보였고 바깥 부분에서는 다소 큰 오차를 보였다. 본 논문에서는 surface-averaged neutron current를 prior in-formation에 포함시키지 못했는데, 이것을 포함시키면 결과가 훨씬 개선 될 것으로 보인다.

  • PDF

그레이 레벨의 분산을 이용한 엔트로피에 기반한 영상 임계화 (Image Thresholding based on the Entropy Using Variance of the Gray Levels)

  • 권순학
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.543-548
    • /
    • 2011
  • 영상의 세세한 부분에 대한 표현 정확도를 나타내는 엔트로피는 일반적으로 영상이 가진 그레이 레벨의 도수, 즉, 히스토그램을 바탕으로 얻어지며, 영상의 이진화를 위한 지표로 널리 사용되어 왔다. 본 논문에서는 이러한 영상 이진화를 위한 엔트로피 계산에 있어서 히스토그램이 아닌 그레이 레벨의 분산을 이용한 엔트로피를 바탕으로 그레이 영상을 이진화하는 알고리즘을 제안하고, 9개의 시험 영상에 대한 실험과 기존의 영상 이진화 기법인 오츠 기법 및 히스토그램을 이용한 엔트로피 기반의 임계값 결정법과의 비교 및 검토를 통하여 제안된 기법의 효용성을 보인다.

ONLINE TEST BASED ON MUTUAL INFORMATION FOR TRUE RANDOM NUMBER GENERATORS

  • Kim, Young-Sik;Yeom, Yongjin;Choi, Hee Bong
    • 대한수학회지
    • /
    • 제50권4호
    • /
    • pp.879-897
    • /
    • 2013
  • Shannon entropy is one of the widely used randomness measures especially for cryptographic applications. However, the conventional entropy tests are less sensitive to the inter-bit dependency in random samples. In this paper, we propose new online randomness test schemes for true random number generators (TRNGs) based on the mutual information between consecutive ${\kappa}$-bit output blocks for testing of inter-bit dependency in random samples. By estimating the block entropies of distinct lengths at the same time, it is possible to measure the mutual information, which is closely related to the amount of the statistical dependency between two consecutive data blocks. In addition, we propose a new estimation method for entropies, which accumulates intermediate values of the number of frequencies. The proposed method can estimate entropy with less samples than Maurer-Coron type entropy test can. By numerical simulations, it is shown that the new proposed scheme can be used as a reliable online entropy estimator for TRNGs used by cryptographic modules.

Discriminant Analysis of Binary Data with Multinomial Distribution by Using the Iterative Cross Entropy Minimization Estimation

  • Lee Jung Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제12권1호
    • /
    • pp.125-137
    • /
    • 2005
  • Many discriminant analysis models for binary data have been used in real applications, but none of the classification models dominates in all varying circumstances(Asparoukhov & Krzanowski(2001)). Lee and Hwang (2003) proposed a new classification model by using multinomial distribution with the maximum entropy estimation method. The model showed some promising results in case of small number of variables, but its performance was not satisfactory for large number of variables. This paper explores to use the iterative cross entropy minimization estimation method in replace of the maximum entropy estimation. Simulation experiments show that this method can compete with other well known existing classification models.

Improved Collaborative Filtering Using Entropy Weighting

  • Kwon, Hyeong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • 제1권2호
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we evaluate performance of existing similarity measurement metric and propose a novel method using user's preferences information entropy to reduce MAE in memory-based collaborative recommender systems. The proposed method applies a similarity of individual inclination to traditional similarity measurement methods. We experiment on various similarity metrics under different conditions, which include an amount of data and significance weighting from n/10 to n/60, to verify the proposed method. As a result, we confirm the proposed method is robust and efficient from the viewpoint of a sparse data set, applying existing various similarity measurement methods and Significance Weighting.

  • PDF

엔트로피 가중치 및 SVD를 이용한 군집 특징 선택 (Cluster Feature Selection using Entropy Weighting and SVD)

  • 이영석;이수원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권4호
    • /
    • pp.248-257
    • /
    • 2002
  • 군집화는 객체들의 특성을 분석하여 유사한 성질을 갖고 있는 객체들을 동일한 집단으로 분류하는 방법이다. 전자 상거래 자료처럼 차원 수가 많고 누락 값이 많은 자료의 경우 입력 자료의 차원축약, 잡음제거를 목적으로 SVD를 사용하여 군집화를 수행하는 것이 효과적이지만, SVD를 통해 변환된 자료는 원래의 속성 정보를 상실하기 때문에 군집 결과분석에서 원본 속성의 가치 해석이 어렵다. 따라서 본 연구는 군집화 수행 후 엔트로피 가중치 및 SVD를 이용하여 군집의 중요한 속성을 발견하기 위한 군집 특징 선택 기법 ENTROPY-SVD를 제안한다. ENTROPY-SVD는 자료의 속성들과 유사객체 군과의 묵시적인 은닉 구조를 활용하기 위하여 SVD를 이용하고 유사객체 군에 포함된 응집도가 높은 속성들을 발견하기 위하여 엔트로피 가중치를 사용한다. 또한 ENTROPY-SVD를 적용한 모델 기반의 협력적 여과기법의 추천 시스템 CFS-CF를 제안하고 그 효용성 및 효과를 평가한다.

Measure of Fuzziness with fuzzy entropy function

  • Lee, Sang-Hyuk;Kang, Keum-Boo;Kim, Sung shin
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.642-647
    • /
    • 2004
  • The relations of fuzzy entropy, distance measure, and similarity measure are discussed in this paper. For the purpose of reliable signal selection, the fuzzy entropy is proposed by a distance measure. Properness of the proposed entropy is verified by the definition of the entropy measure. Fourier and Wavelet transform are applied to the stator current signal to obtain the fault features of an induction motor. Membership functions for 3-phase currents are obtained by the Bootstrap method and Central Limit Theorem. Finally, the proposed entropy is applied to measure the fault signal of an induction machine, and the fuzzy entropy values of phase currents are illustrated.

Cross-Entropy를 이용한 전력계통계획의 확률적 기법 연구 (Probabilistic Technique for Power System Transmission Planning Using Cross-Entropy Method)

  • 이재희;주성관
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2136-2141
    • /
    • 2009
  • Transmission planning is an important part of power system planning to meet an increasing demand for electricity. The objective of transmission expansion is to minimize operational and construction costs subject to system constraints. There is inherent uncertainty in transmission planning due to errors in forecasted demand and fuel costs. Therefore, transmission planning process is not reliable if the uncertainty is not taken into account. The paper presents a systematic method to find the optimal location and amount of transmission expansion using Cross-Entropy (CE) incorporating uncertainties about future power system conditions. Numerical results are presented to demonstrate the performance of the proposed method.

모듈의 의존관계와 저자 엔트로피를 이용한 소프트웨어 모듈-뷰 복원 (Recovery of Software Module-View using Dependency and Author Entropy of Modules)

  • 김정민;이찬근;이기성
    • 정보과학회 논문지
    • /
    • 제44권3호
    • /
    • pp.275-286
    • /
    • 2017
  • 본 연구에서 우리는 모듈의 의존관계와 저자 엔트로피(Author Entropy) 정보를 이용하여 소프트웨어 모듈-뷰를 복원하는 새로운 소프트웨어 클러스터링 기법을 제안한다. 해당 기법은 우선 구조적 및 논리적 의존관계 정보를 기준으로 소프트웨어 모듈을 클러스터링한 후, 모듈 별 저자 엔트로피를 이용하여 일부 선택된 모듈을 클러스터 결과로부터 이전한다. 제안된 기법의 평가를 위해 참(ground-truth) 모듈-뷰가 알려진 오픈소스 프로젝트들에 적용하여 MoJoFM 값을 구하였다. 이와 함께 기존에 연구된 모듈-뷰 복원 기법들의 MoJoFM값과 비교하여, 제안된 기법이 소프트웨어 모듈-뷰 복원에 보다 효과적임을 보였다.

앤트로피 거절을 활용한 음성인식 시스템의 성능 향상 (Improvement of Speech Recognition System using Entropy Rejection)

  • 송점동
    • 정보학연구
    • /
    • 제2권2호
    • /
    • pp.139-144
    • /
    • 1999
  • 본 논문은 음성인식 시스템에서 정확도를 높이기 위해 후처리 단계에서 후보 단어들의 엔트로피 정보를 이용하였다. 기존의 우도비 검출방법은 음성 데이터에 따라 음성인식 시스템의 성능이 변하고 N개의 후보단어들의 우도값이 비슷하여 오인식 발생확률이 높았다. 그러나 본 눈문에서는 각 후보 단어들의 엔트로피 값보다 인식대상 단어 외의 단어들의 엔트로피 값이 상대적으로 낮은 후보를 거절하는 후처리 방법을 사용하여 음성 데이터에 독립적이면서도 변별력을 높인 정확한 음성인식 시스템을 얻을 수 있었다. 실험 결과 본 논문에서 제안하는 엔트로피에 의한 후처리 방법은 우도비에 의한 방법보다 인식 시스템의 성능을 false alarm이 20%일 때 최대 3.6% 향상시킬 수 있었다.

  • PDF