• Title/Summary/Keyword: entropy measure

Search Result 203, Processing Time 0.032 seconds

Automatic Construction of Class Hierarchies and Named Entity Dictionaries using Korean Wikipedia (한국어 위키피디아를 이용한 분류체계 생성과 개체명 사전 자동 구축)

  • Bae, Sang-Joon;Ko, Young-Joong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.492-496
    • /
    • 2010
  • Wikipedia as an open encyclopedia contains immense human knowledge written by thousands of volunteer editors and its reliability is also high. In this paper, we propose to automatically construct a Korean named entity dictionary using the several features of the Wikipedia. Firstly, we generate class hierarchies using the class information from each article of Wikipedia. Secondly, the titles of each article are mapped to our class hierarchies, and then we calculate the entropy value of the root node in each class hierarchy. Finally, we construct named entity dictionary with high performance by removing the class hierarchies which have a higher entropy value than threshold. Our experiment results achieved overall F1-measure of 81.12% (precision : 83.94%, recall : 78.48%).

AN IMAGE THRESHOLDING METHOD BASED ON THE TARGET EXTRACTION

  • Zhang, Yunjie;Li, Yi;Gao, Zhijun;Wang, Weina
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.661-672
    • /
    • 2008
  • In this paper an algorithm, based on extracting a certain target of an image, is proposed that is capable of performing bilevel thresholding of image with multimodal distribution. Each pixel in the image has a membership value which is used to denote the characteristic relationship between the pixel and its belonging region (i.e. the object or background). Using the membership values of image set, a new measurement, which simultaneously measures the measure of fuzziness and the conditional entropy of the image, is calculated. Then, thresholds are found by optimally minimizing calculated measurement. In addition, a fuzzy range is defined to improve the threshold values. The experimental results demonstrate that the proposed approach can select the thresholds automatically and effectively extract the meaningful target from the input image. The resulting image can preserve the object region we target very well.

  • PDF

Mobile User Interface Pattern Clustering Using Improved Semi-Supervised Kernel Fuzzy Clustering Method

  • Jia, Wei;Hua, Qingyi;Zhang, Minjun;Chen, Rui;Ji, Xiang;Wang, Bo
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.986-1016
    • /
    • 2019
  • Mobile user interface pattern (MUIP) is a kind of structured representation of interaction design knowledge. Several studies have suggested that MUIPs are a proven solution for recurring mobile interface design problems. To facilitate MUIP selection, an effective clustering method is required to discover hidden knowledge of pattern data set. In this paper, we employ the semi-supervised kernel fuzzy c-means clustering (SSKFCM) method to cluster MUIP data. In order to improve the performance of clustering, clustering parameters are optimized by utilizing the global optimization capability of particle swarm optimization (PSO) algorithm. Since the PSO algorithm is easily trapped in local optima, a novel PSO algorithm is presented in this paper. It combines an improved intuitionistic fuzzy entropy measure and a new population search strategy to enhance the population search capability and accelerate the convergence speed. Experimental results show the effectiveness and superiority of the proposed clustering method.

Edge Detection By Fusion Using Local Information of Edges

  • Vlachos, Ioannis K.;Sergiadis, George D.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.403-406
    • /
    • 2003
  • This paper presents a robust algorithm for edge detection based on fuzzy fusion, using a novel local edge information measure based on Renyi's a-order entropy. The calculation of the proposed measure is carried out using a parametric classification scheme based on local statistics. By suitably tuning its parameters, the local edge information measure is capable of extracting different types of edges, while exhibiting high immunity to noise. The notions of fuzzy measures and the Choquet fuzzy integral are applied to combine the different sources of information obtained using the local edge information measure with different sets of parameters. The effectiveness and the robustness of the new method are demonstrated by applying our algorithm to various synthetic computer-generated and real-world images.

  • PDF

MEASURE OF DEPARTURE FROM QUASI-SYMMETRY AND BRADLEY-TERRY MODELS FOR SQUARE CONTINGENCY TABLES WITH NOMINAL CATEGORIES

  • Kouji Tahata;Nobuko Miyamoto;Sadao Tomizawa
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.129-147
    • /
    • 2004
  • For square contingency tables with nominal categories, this paper proposes a measure to represent the degree of departure from the quasi-symmetry (QS) model and the Bradley-Terry (BT) model. The measure proposed is expressed by using the Cressie and Read (1984)'s power-divergence or Patil and Taillie (1982)'s diversity index. The measure lies between 0 and 1, and it is useful for comparing the degree of departure from QS or BT in several tables.

Generalized Measure of Departure From Global Symmetry for Square Contingency Tables with Ordered Categories

  • Tomizawa, Sadao;Saitoh, Kayo
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.289-303
    • /
    • 1998
  • For square contingency tables with ordered categories, Tomizawa (1995) considered two kinds of measures to represent the degree of departure from global symmetry, which means that the probability that an observation will fall in one of cells in the upper-right triangle of square table is equal to the probability that the observation falls in one of cells in the lower-left triangle of it. This paper proposes a generalization of those measures. The proposed measure is expressed by using Cressie and Read's (1984) power divergence or Patil and Taillie's (1982) diversity index. Special cases of the proposed measure include TomiBawa's measures. The proposed measure would be useful for comparing the degree of departure from global symmetry in several tables.

  • PDF

A Study on Complexity Measure Algorithm of Time Series Data (시계열 데이타의 흔돈도 분석 알고리즘에 관한 연구)

  • Lee, Byung-Chae;Jeong, Kee-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.281-284
    • /
    • 1995
  • This paper describes a complexity measure algorithm based on nonlinear dynamics(chaos theory). In order to quantify complexity or regularity of biomedical signal, this paper proposed fractal dimension-1 and fractal dimension-2 algorithm with digital filter. Approximate entropy algorithm which measure a system regularity are also compared. In this paper investigate what we quantify of biomedical signal. These quantified complexity measure may be a useful information about human physiology.

  • PDF

Time Series Analysis of Engine Test Data (엔진 시험 데이터에 대한 시계열 분석)

  • Kim, Il-Doo;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.241-245
    • /
    • 2011
  • In an engine test, data are collected in a form of a time series. Usually only the time average of a time series is interesting to engineers while its stochastic fluctuation is being ignored. In this paper, we collect pressure and fuel flux data from an air-breathing engine test and analyze their fluctuations using the multiscale sample entropy analysis, which is suggested as a measure of the complexity of a time series. It is shown that different physical quantities indeed have different complexities at each timescales, suggesting a possibility of an instantaneous tool which evaluates the engine test.

  • PDF

The Study on Information-Theoretic Measures of Incomplete Information based on Rough Sets (러프 집합에 기반한 불완전 정보의 정보 이론적 척도에 관한 연구)

  • 김국보;정구범;박경옥
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.550-556
    • /
    • 2000
  • This paper comes to derive optimal decision rule from incomplete information using the concept of indiscernibility relation and approximation space in Rough set. As there may be some errors in case that processing information contains multiple or missing data, the method of removing or minimizing these data is required. Entropy which is used to measure uncertainty or quantity in information processing field is utilized to remove the incomplete information of rough relation database. But this paper does not always deal with the information system which may be contained incomplete information. This paper is proposed object relation entropy and attribute relation entropy using Rough set as information theoretical measures in order to remove the incomplete information which may contain condition attribute and decision attribute of information system.

  • PDF

An Image Retrieval Technique using Entropy and Color Features (엔트로피와 색채 특징을 이용한 영상 검색 기법)

  • Kim, Tae-Hui;Jeong, Dong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.3
    • /
    • pp.282-290
    • /
    • 1999
  • 본 논문에서는 영상 데이터베이스에서의 색인화를 위해 화소간의 엔트로피(inter-pixel entropy)측면에서 영상을 해석하여 특징을 추출하는 색인기법을 제안하였다. 엔트로피를 정량적으로 나타내기 위하여 PIM(picture information measure)에 기반한 특징을 각각의 영상들로부터 추출하여 색인으로 사용하였다. 엔트로피에 기반 하는 특징은 한 영상에 대하여 3가지를 추출하였다. 첫 번째 특징은 원 영상으로부터 직접 값들을 추출하였고 영상의 해상도와 그레이 레벨을 낮추어 가면서 얻어지는 영상들로부터 두 번째, 세번째 의 엔트로피 특징을 각각 추출하였다. 일반적으로 영상의 경우에 엔트로피가 높은 영역에 정보가 집중되는 경향이 있고 엔트로피가 낮은 영역에서는 배경 영역 등의 정보를 추출하게된다. 이러한 이유로 색채 특쟁은 엔트로피에 따라서 분리된 영역에서 추출하였다. 전역검색(global search)은 엔트로피 특징을 이용하였고 색채 특징을 이용하여 지역 검색(local search)을 시도하였다. 실험은 색채와 엔트로피로 식별이 유용한 꽃 영상을 사용하였는데 원치 않는 영상이 상위 단계에서 나타나는 빈도가 기존의 타 기법에 비해 줄어들었다.