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Generalized Measure of Departure From Global
Symmetry for Square Contingency Tables
with Ordered Categories

Sadao Tomizawa and Kayo Saitoh!

ABSTRACT

For square contingency tables with ordered categories, Tomizawa‘(1995)
considered two kinds of measures to represent the degree of departure from
global symmetry, which means that the probability that an observation will
fall in one of cells in the upper-right triangle of square table is equal to
the probability that the observation falls in one of cells in the lower-left
triangle of it. This paper proposes a generalization of those measures. The
proposed measure is expressed by using Cressie and Read’s (1984) power
divergence or Patil and Taillie’s (1982) diversity index. Special cases of
the proposed measure include Tomizawa’s measures. The proposed measure
would be useful for comparing the degree of departure from global symmetry
in several tables.

Keywords: Diversity index; Gini concentration; Kullback-Leibler information;
Pearson’s chi-squared type discrepancy; Power divergence; Shannon entropy

1. INTRODUCTION

For an R x R square contingency table with the same row and column classi-
fications, let X and Y denote the row and column variables, respectively, and let

R R
Pr(X =4,Y =j) =pi i =1,2,... ,R;5 =1,2,... ,R), where 3 > "p;j = 1.

i=1 j=1
Read’s (1977) global symmetry (GS) model is defined by
6U == 6L,
where dy = ZZPU [= Pr(X <Y)] and 6, = ZZpij [= Pr(X > Y)).
i<j i>j

Note that the GS model is applied to ordinal categorical data, because the GS
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model is not invariant under the same arbitrary permutations of row and column
categories. Tomizawa (1995) proposed two kinds of measures to represent the
degree of departure from GS (see Appendix). One measure, ¢gs, is expressed by
using the Kullback-Leibler information (or the Shannon entropy) and the other
measure, ¥gs, is expressed by using the Pearson’s chi-squared type discrepancy
(or the Gini concentration); see Appendix.

By the way, Cressie and Read (1984), and Read and Cressie (1988) consid-
ered the power-divergence statistic for testing goodness of fit, which includes
the likelihood ratio and the Pearson’s chi-squared statistics in special cases (see
Section 5). We are interested in a measure of departure from GS based on the
power-divergence discrepancy.

The purpose of this paper is to propose a power-divergence type measure
which represents the degree of departure from GS for square contingency tables.
The measure would be useful for comparing the degree of departure from GS in
several tables.

2. MEASURE OF DEPARTURE FROM GLOBAL
SYMMETRY '

Assume that dy + 01, # 0. Let &, = dy/(0v + d1) [= Pr(X<Y|X#Y)] and
§ = 0p/(0y + 1) [= Pr(X>Y|X#Y)]. Note that (i) 6}, (67) indicates the
probability that an observation falls in one of cells in the upper-right triangle
(in one of cells in the lower-left triangle) of square table on condition that the
observation will fall in one of the off-diagonal cells of square table, and (ii) d;; = %
(or 6% = 1) if and only if the GS model holds.

Consider a measure defined by

A AA+1) . o 11
(D(GS), = ‘Iz‘ﬁ_"l_f('\) ({6U76L}; {5, 5 for A > —1,

where

IV(5) = &(TIJT) [6’?{(1%>A ) 1} +62{(15_/22_)A- 1}]

and the value at A = 0 is taken to be continuous limit as A — 0, and where A is
a real-value that is chosen by the user. [Note that @g)% and @8% are the same to
$cs and Pgs, respectively, in Appendix.] We note that 7 ({d5,01}:{1/2,1/2})
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is the power divergence between two conditional distributions {4}, 61} and
{1/2,1/2}, on condition that an observation falls in one of the off-diagonal cells
of square table. [In addition, we note that the power divergence includes the
Kullback-Leibler information (when A = 0) and the Pearson chi-squared type
discrepancy (when A = 1) in special cases. For the more details of the power
divergence, see Cressie and Read (1984) and Read and Cressie (1988). |
This measure may also be expressed as
A
o) =1- %'-_?—IHW ({65,651 for A > —1,

where
HO() = 1 [1- @ - 6™
and the value at A = 0 is taken to be continuous limit as A — 0. We note that
HW ({6,63}) is the Patil and Taillie’s (1982) diversity index of degree-A for
the conditional distribution {d§;,4d}} which includes the Shannon entropy (when
= 0) and the Gini concentration (when A = 1) in special cases. The measure
Q(G’\S) is a generalization of Tomizawa’s measures ¢gs and Pgs.

Noting that I™ ({6%,6%};{1/2,1/2}) > 0 and HW ({6,65}) > 0, we see
that @8‘5) must lie between 0 and 1. Also, for each A(> —1), (i) there is a structure
of GS in the R x R table if and only if Cbg‘s) = 0 and (ii) the degree of departure
from GS is the largest in the sense that &f; = 1 (then 6; =0 ) or 67 = 1 (then

;7 =0); if and only if @g‘g = 1. According to the power divergence or the Patil

and Taillie’s diversity index, (I)(G)‘S) represents the degree of departure from GS,

and the degree increases as the value of é(c;\s) increases.

3. APPROXIMATE CONFIDENCE INTERVALS FOR
MEASURES

Let n;; denote the observed frequency in the ith row and jth column of
the square table (4 = 1,2,...,R;j = 1,2,...,R). The sample version of Qgg,
ie., é)(é\s)’ is given by @8% with {p;;} replaced by {pi;}, where p;; = n;;/n and
n = Y5 n;j. Assuming that the {n;;} result from full multinominal sampling,
we shall consider an approximate standard error for égg and large-sample confi-
dence interval for @85) using the delta method (see Bishop et al. (1975, Sec.14.6)
and Agresti (1990, Sec.12.1)). Using the delta method, \/ﬁ(@g‘s) - (I)(C?S)) has

asymptotically (as n — oo ) a normal distribution with mean zero and variance,
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PA+DN 850 [ el
{ e {(5,,) — (&%) } for A>—1;A %0,
0401
(log 2)2(éy + d1)
Let 62 denote o° with {p;;} replaced by {f;;}. Then //n is an estimated approx-
imate standard error for ‘i’g\s)n and @g\g’ £ 2,79 6/+/n is an approximate 100(1 — p)

{log(éu/61)}? for A =0.

percent confidence interval for @83), where 2,/ is the upper (p/2)-th quantile of
the standard normal distribution.

4. EXAMPLES

Consider the data in Table 4.1, taken from Tominaga (1979, p53). These
data describe the cross-classification of father’s and son’s occupational status
categories in Japan which were examined in 1955, 1965 and 1975.

Since the confidence intervals for @85) applied to the data in each of Tables
4.1(a), 4.1(b) and 4.1(c) do not include zero for all X\ (see Table 4.2), these would
indicate that there is not a structure of GS in each table.

Also, we shall investigate the degree of departure from GS in more details.
For instance, when A = 2, the estimated measure @g% equals to 0.118 for Table
4.1(a), 0.235 for Table 4.1(b), and 0.212 for Table 4.1(c)(see Table 4.2). Thus,
(i) for Table 4.1(a), the degree of departure from GS is estimated to be 11.8
percent of the maximum degree of departure from GS, (ii) for Table 4.1(b), it is
estimated to be 23.5 percent of the maximum degree of departure from GS, and
(iii) for Table 4.1(c), it is estimated to be 21.2 percent of the maximum degree
of departure from GS.

Based on the confidence intervals for @g‘s), we found that the degrees of de-
parture from GS model in Tables 4.1(b), 4.1(c) are greater than those in Table
4.1(a). However, the comparison between them in Tables 4.1(b) and 4.1(c) may
be impossible because the values in the confidence interval for Table 4.1(b) are
not always greater than the values in the confidence interval for Table 4.1(c).

5. CONCLUDING REMARKS

Let W) denote the power-divergence statistic for testing goodness of fit of
the GS model. that is
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where

i=1 j=1 p"]
i3/ (26%) for i < 4,
it Pij/ (26%) for i > 4,
Dii for ¢ = j,

and 5[*](52) denotes d;;(07) with {p;;} replaced by {p;;} and where the values
at A = —1 and A = 0 are taken to be continuous limit as A - —1 and A — 0,
respectively. [Note that {ﬁf‘f L} are the maximum likelihood estimates of {p;;}
under the GS model, and also especially W(©® and W) are the likelihood ratio
and the Pearson’s chi-squared statistics, respectively. See Table 5.1 for the values
of W applied to the data in Tables 4.1(a), 4.1(b) and 4.1(c).] Then we note
that

AN+ 1)
2022 = 1) 30305 i

Consider the artificial data in Table 5.2. The values of WM (with one degree
of freedom) applied to these data are given in Table 5.3. ;From W) with
0.8 < X\ < 2.4, we see that the GS model fits the data in Table 5.2(a) worse than
that in Table 5.2(b). However, from W) with A < 0.6 or A > 2.6, we see that
the GS model fits the data in Table 5.2(a) better than that in Table 5.2(b). On
the other side, for any fixed A(> —1), the value of (i)g\s) for Table 5.2(a) is less
than that for Table 5.2(b) (see Table 5.4). Since the value of dy/dy (= 5[*]/52)
is 0.57 for Table 5.2(a) and 0.12 for Table 5.2(b), and also it is equal to 1 when
the GS model holds, it seems natural to conclude that the degree of departure
from GS for Table 5.2(a) is less than that for Table 5.2(b). Therefore ‘i)g\s) may
be preferable to W) for comparing the degree of departure from GS.

d8) = W for A > —1.

The GS model imposes no restriction on the diagonal cell probabilities {p;; }.
Therefore, the structure of GS based on the probabilities {p;;}, i.e., y = I,
may also be expressed as d;; = ¢7 using the conditional probabilities {p;‘j}, 1 # 9,
where pf; = pi;/(30 24, Pij)- In sample version, W /n (for a given X ) is a

measure based on {f;;}, and (i)(c;\s) is essentially the corresponding measure based
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on {13;-*]-}, i # j, because ‘i’gs) may also be expressed as
2 (A A(A + 1) A ~%
63 = S 1Y (1o} s {23 ). (5.1)

where 1ML = plf LI(E 3i; 8MF). Tt may seem, to many readers, that both are

reasonable measures, for representing the degree of departure from GS. However,
tig‘s) rather than Wo‘)/ n would be useful for comparing the degree of departure
from GS in several tables because the range of W) /n (for A > —1) depends on

the diagonal proportions, i.e.,

W 9@ —1) 2 ng
< < —_ oy,
0s == =50+ \! 2o

=1

but @8‘% always range between 0 and 1 without depending on the diagonal pro-
portions.

The (i)g‘s) would be useful when one want to measure how far the conditional
probability distribution {p;}, i # j, are distant from those with a structure
of GS [though the W® /n would be useful when one want to measure how far
the unconditional probability distribution {p;;} are distant from those with a
structure of GSJ.

By the way, since ﬁfJM L'in (5.1) is the maximum likelihood estimate of p};, it

is easily seen that especially the measure ‘i)(c(;)% can be expressed as

G = 1oy min 1O ({3} {0 (52)
iy

where Y 37, P° = 3 2045, Py and 3 > izg Dif® = 1 with pi7° > 0. Therefore
we note that p5* in (5.1) is the value of p}5* such that the Kullback-Leibler (KL)
distance I9(-;-) (i.e., the KL distance between the sample conditional distribu-
tion {p};} and the estimated conditional distribution {}{°} with a GS structure)
is minimum. [Note that the reader may also be interested in (5.2) with I ©;)
replaced by the power-divergence I (AJ(;;-); however, it is difficult to obtain the

*

value of p7¢* such that the corresponding power-divergence is minimum, and also

difficult toj obtain the maximum value of such a measure.|

The reader may be interested in which value of X is preferred for a given table.
However, it seems difficult to discuss it. It seems to be important that for given
tables, the analyst calculates the values of @8‘% for various values of A and discuss

the degree of departure from GS in terms of them. [However, the case of A = 0,
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ie., @g)% may be useful in terms of the expression (5.2) when the analyst wants to
see with a minimum distance measure how far the sample conditional probability
distribution is distant from the estimated conditional probability distribution
with a GS structure.]

Finally we observe that the measure should be applied to square contingency
tables with ordered categories because it is not invariant under the same arbitrary
permutations of row and column categories.
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APPENDIX

For an R x R table, two kinds of measures of departure from GS, considered
by Tomizawa (1995), are given as follows:

bos = gl (G511 {35})

1 * *
= 1- @H({éUaéL})v

where
5*
=) = 051 6% 1
H() = —dylogby — o1 logdy,

with {d;;} and {d] } defined in Section 2, and

Yos = ({6U’6L} {; ;})

where

*;;2 x _ 1)2
Dy - B G d

o) = 1- (5 +6).
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Table 4.1: Occupational status for Japanese father-son pairs; from Tominaga
(1979, p53).

(a) Examined in 1955

Son’s status

Father’s status (1) 2 3 (4) (5) (6) (1) (8) Total
@ 36 4 14 7 8 2 3 8 8
(2) 20 20 27 24 11 11 2 11 126
(3) 9 6 23 12 9 5 3 16 83
(4) 15 14 39 81 17 16 11 15 208
(5) 6 7 22 13 72 20 6 13 159
(6) 3 2 5 12 18 19 9 7 75
(7) 5 3 10 11 21 15 38 25 128
(8) 39 30 76 8 690 52 45 614 1005
Total 133 8 216 240 225 140 117 709 1866
(b) Examined in 1965
Son’s status
Father’s status (1) (2) (3) (4) (5) 6) (7) (8) Total
1) 27 10 16 3 6 6 1 2 71
(2) 15 38 30 20 8 4 3 7 125
(3) 13 17 32 17 7 16 6 5 113
(4) 12 36 40 132 22 30 13 6 201
(5) 8 22 38 41 91 42 22 9 273
(6) 2 2 7 12 13 16 3 2 57
(7) 3 2 11 11 13 26 30 6 102
(8) 38 44 95 101 132 114 60 309 893
Total 118 171 269 337 292 254 138 346 1925
(c) Examined in 1975
Son’s status
Father’s status (1) (2) 3) 4) (5) 6) (1) (8) Total
(1) 44 18 28 8 6 8 1 ) 118
(2) 15 50 45 20 18 17 4 7 176
(3) 18 25 47 30 24 18 5 7 174
(4) 6 27 53 77 40 29 9 6 257
(5) 18 25 42 31 122 43 17 13 311
(6) 12 15 21 15 36 33 3 8 143
(7) 3 5 8 7 % 21 9 3 82
8) 44 65 114 92 184 195 58 325 1077
Total 170 230 358 280 456 364 106 374 2338

Note: Status(1) is Professional; (2), Managers; (3), Clerical; (4), Sales; (5), Skilled
Manual; (6), Semiskilled manual; (7), Unskilled manual; and (8), Farmers.



Table 4.2: Estimate of @8‘5), estimated approximate standard error for <i>(G
approximate 95% confidence interval for )

and 4.1(c).

(a) For Table 4.1(a):

Measure of Global Symmetry

GS»

Values of A Estimated Standard Confidence
measure €rror interval

-0.8 0.023 0.004 (0.015, 0.032)
-0.6 0.043 0.008 (0.028, 0.059)
04 0.061 0.011 (0.039, 0.082)
-0.2 0.075 0.014 (0.048, 0.102)

0 0.087 0.016 (0.056, 0.118)
0.2 0.097 0.017 (0.063, 0.131)
04 0.105 0.019 (0.068, 0.141)
0.6 0.111 0.020 (0.072, 0.149)
0.8 0.115 0.020 (0.075, 0.155)
1.0 0.118 0.021 (0.077, 0.159)
1.2 0.120 0.021 (0.079, 0.161)
1.4 0.121 0.021 (0.079, 0.162)
1.6 0.121 0.021 (0.079, 0.162)
1.8 0.120 0.021 (0.078, 0.161)
2.0 0.118 0.021  (0.077, 0.159)
2.2 0.116 0.020 (0.076, 0.156)
2.4 0.113 0.020 (0.074, 0.153)
2.6 0.110 0.020 (0.072, 0.149)
2.8 0.107 0.019 (0.069, 0.144)
3.0 0.103 0.019 (0.067, 0.140)

A)
S
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and

applied to Tables 4.1(a), 4.1(b)
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Table 4.2: (continued)
(b) For Table 4.1(b):

Values of A Estimated Standard Confidence
measure error interval

-0.8 0.049 0.006 (0.038, 0.060)
-0.6 0.091 0.010 (0.071, 0.111)
-0.4 0.125 0.014 (0.098, 0.152)
-0.2 0.154 0.017 (0.121, 0.186)

0 0.177 0.019 (0.140, 0.214)
0.2 0.200 0.021 (0.155, 0.236)
0.4 0.210 0.022 (0.167, 0.253)
0.6 0.221 0.023 (0.177, 0.266)
0.8 0.229 0.024 (0.183, 0.276)
1.0 0.235 0.024 (0.188, 0.282)
1.2 0.238 0.024 (0.191, 0.286)
1.4 0.240 0.024 (0.192, 0.287)
1.6 0.239 0.024 (0.192, 0.287)
1.8 0.238 0.024 (0.190, 0.285)
2.0 0.235 0.024 (0.188, 0.282)
2.2 0.231 0.024 (0.185, 0.278)
2.4 0.227 0.023 (0.181, 0.272)
2.6 0.221 0.023  (0.176, 0.266)
2.8 0.216 0.023 (0.171, 0.260)
3.0 0.209 0.022 (0.166, 0.253)




Table 4.2: (continued)
(c) For Table 4.1(c):

Measure of Global Symmetry

Values of A Estimated Standard Confidence
measure €rror interval

-0.8 0.044 0.005 (0.035, 0.053)
-0.6 0.081 0.008 (0.065, 0.098)
-0.4 0.112 0.011 (0.090, 0.135)
-0.2 0.138 0.014 (0.111, 0.165)

0 0.159 0.016 (0.128, 0.190)
0.2 0.176 0.017 (0.142, 0.210)
0.4 0.190 0.018  (0.153, 0.225)
0.6 0.200 0.019 (0.162, 0.237)
0.8 0.207 0.020 (0.168, 0.246)
1.0 0.212 0.020 (0.172, 0.252)
1.2 0.215 0.020 (0.175, 0.255)
14 0.216 0.021 (0.176, 0.257)
1.6 0.216 0.021  (0.176, 0.256)
1.8 0.215 0.020  (0.174, 0.255)
2.0 0.212 0.020 (0.172, 0.252)
2.2 0.208 0.020 (0.169, 0.248)
2.4 0.204 0.020  (0.166, 0.243)
2.6 0.199 0019  (0.161, 0.237)
2.8 0.194 0.019 (0.157, 0.231)
3.0 0.188 0018  (0.152, 0.225)

299
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Table 5.1: The values of power-divergence statistic W(») (with one degree of
freedom) for testing goodness of fit of the global symmetry model, applied to
Tables 4.1(a), 4.1(b) and 4.1(c).

Values of A W) applied W applied W applied

to Table la Table 1b Table 1c

-0.8 119.86 327.77 381.27
-0.6 118.76 321.41 374.68
-04 117.77 315.78 368.83
-0.2 116.90 310.84 363.68
0 116.12 306.54 359.19
0.2 115.46 302.86 355.34
0.4 114.89 299.77 352.10
0.6 114.42 297.24 349.44
0.8 114.05 295.25 347.35
1.0 113.77 293.79 345.80
1.2 113.59 292.83 344.79
1.4 113.50 292.36 344.29
1.6 113.50 292.37 344.30
1.8 113.59 292.85 344.80
2.0 113.77 293.79 345.80
2.2 114.04 295.19 347.28
2.4 114.40 297.04 349.25
2.6 114.85 299.34 351.69
2.8 115.38 302.09 354.61

3.0 116.01 305.30 358.02
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Table 5.2: Artificial data

(a) n = 1117 (sample size) (b) n =115

202 92 7 7 5 0

123 53 140 19 27 3

125 170 205 27 22 5
Note: {dy,dr} = {0.21,0.37}, Note: {by,ér} = {0.07,0.59},
{8%,6%} = {0.36,0.64} {8%,6%} = {0.11,0.89}

Table 5.3: The values of power-divergence statistic W®*) (with one degree of
freedom) for testing goodness of fit of the global symmetry model, applied to
Tables 5.2(a) and 5.2(b).

Values of A WW applied W applied
to Table 4a to Table 4b

-0.8 50.36 68.55
-0.6 50.08 63.88
-0.4 49.82 60.01
-0.2 49.59 56.82
0 49.39 54.21
0.2 49.21 52.09
0.4 49.07 50.40
0.6 48.94 49.07
0.8 48.84 48.08
1.0 48.77 47.37
1.2 48.72 46.92
1.4 48.70 46.71
1.6 48.70 46.73
1.8 48.72 46.95
2.0 48.77 47.37
2.2 48.84 47.98
2.4 48.94 48.78
2.6 49.06 49.76
2.8 49.20 50.93

3.0 49.37 52.29
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Table 5.4: Values of @88) applied to Tables 5.2(a) and 5.2(b).

Values of A @gs) applied ‘i’g‘s) applied
to Table 4a.  to Table 4b

-0.8 0.014 0.170
-0.6 0.027 0.296
-0.4 0.038 0.391
-0.2 0.047 0.462
0 0.054 0.515
0.2 0.060 0.553
0.4 0.065 0.581
0.6 0.069 0.601
0.8 0.072 0.615
1.0 0.074 0.623
1.2 0.075 0.628
1.4 0.076 0.630
1.6 0.076 0.630
1.8 0.075 0.627
2.0 0.074 0.623
2.2 0.073 0.618
2.4 0.071 0.612
2.6 0.069 0.605
2.8 0.067 0.598

3.0 0.064 0.590
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