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MEASURE OF DEPARTURE FROM QUASI-SYMMETRY
AND BRADLEY-TERRY MODELS FOR SQUARE
CONTINGENCY TABLES WITH NOMINAL
CATEGORIES

Kousi TAHATA!, NOBUKO MIYAMOTO! AND SADAO TOMIZAWA'!
b

ABSTRACT

For square contingency tables with nominal categories, this paper pro-
poses a measure to represent the degree of departure from the quasi-symme-
try (QS) model and the Bradley-Terry (BT) model. The measure proposed
is expressed by using the Cressie and Read (1984)’s power-divergence or
Patil and Taillie (1982)’s diversity index. The measure lies between 0 and
1, and it is useful for comparing the degree of departure from QS or BT in
several tables.
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1. INTRODUCTION

For an R x R square contingency table with the same nominal row and column
classifications, let p;; denote the probability that an observation will fall in the ith
row and 7% column of the table (i = 1.2,...,R; j = 1,2,..., R). The symmetry
{S) model is defined by

p,j]':¢i]’ fOI“i:1.2,...,R:j=1,2,...,R.

where ¢;; = ¢;; (Bishop et al.. 1975. p.282). The quasi-symmetry (QS) model,
considered by Caussinus (1965). is defined by

pi; = aif3pp; for i =1,2.... . R: y=1.2,... R
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where 1);; = ;. Putting v; = o;/58; and 1/);“]- = B89, this model may be
expressed as

pij:')’i'(/J;'kj for i=1,27...,R;j=1,2,...,R,

where ¢, = ;‘l A special case of this model obtained by putting {a; = 3;} or
{~vi = 1} is the S model. The QS model may also be expressed as

Dijk = ij,' for 1 < j <k, (1.1)

where
Dijr = pijpikpri» Drji = DkjPjiPik-

From (1.1), the QS model is further expressed as, using the odds-ratios, e.g.,
Olicsii<k) = Ojchiicyy for i <j <k,

where
Oiciiicn _ PijPjk 0 poic _ DPyiPk;
(1<435 <k) PiiPik (F<k;i<y) PriDjj
This indicates the symmetry of odds-ratios with respect to the main diagonal of
the square table (though the S model indicates the symmetry of cell probabilities
{pij})-
Let

N S,
pi]——m for 1 #£ 3.
This indicates the conditional probability that an observation will fall in cell (1, j)
on condition that it falls in cell (¢,5) or (4,4), ¢ # j. Then the QS model may be
furthermore expressed as
Vi
Yi + Y

Py = for i # 3. (1.2)

From (1.1) and (1.2), the QS model may be expressed as
Qijk = iji for 4 <j <k, (13)
where
Qijk = P;y;P5kPhis Qkji = Pk;PjiPik-
The QS model is essentially equivalent to the Bradley-Terry (BT) model ap-

plied to a set of data from R(R — 1)/2 paired comparison (Bradley and Terry,
1952). For example. consider the athletic competitions with the outcome for the
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play of any two teams of R teams. Then, let 7;; for « < j denote the probability
that team ¢ defeats team j when team ¢ plays tcam j, and let 7j; (= 1 — 7;;) for
1 < j denote the probability that team j defeats team ¢ when team ¢ plays team
j- Then the BT model is defined by (1.2) or (1.3) with {pf;} replaced by {m;;},
i # j. The BT model indicates that for the plays of any two teams of teams i, 5
and k, the probability that team ¢ defeats team j, team j defeats team k., and
team k defeats team ¢, is equal to the probability that j defeats ¢, ¢ defeats k,
and k defeats j.

By the way, Tomizawa (1994) and Tomizawa et al. (1998) considered the
measures which represent the degree of departure from the S model for square
tables with nominal categories. Also, Tomizawa et al. (2001) considered the
measure which represents the degree of departure from the S model for square
tables with ordered categories. We are now interested in a measure which repre-
sents the degree of departure from the QS model and the BT model. Note that
Tomizawa (1994) also considered the measures for the other symmetry models;
see, e.g., Tomizawa and Saitoh (1998), and Tomizawa and Saitoh (1999).

The purpose of this paper is to propose a power-divergence type measure
which represents the degree of departure from the QS model and the BT model
for square contingency tables with nominal categories. When the QS model (the
BT model) does not fit the data well in terms of the goodness-of-fit test, as the
next step, it is meaningful to measure what degree the departure from the QS
model (the BT model) is, in terms of the measure. The measure proposed would
be useful for comparing the degree of departure from the QS model (the BT
model) in several tables.

2. MEASURE OF DEPARTURE FROM QUASI-SYMMETRY AND
BRADLEY-TERRY MODELS

2.1. Measure for quasi-symmetry

For an R x R square contingency table with nominal categories, let n;; de-

th

note the observed frequency in the i row and j!* column of the table (i =

1,2,...,R; 7 =1,2,...,R). We assume that {n;;} have a multinomial distribu-
tion,

n”. 2.1
I ln HH" | 2

=1 g 1j=1

where n = Zﬁl Zijl Ny
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Let
A= Z (Qijk + Qrji) »
i<j<k
and
* Qk * Qk * ~ 1 * * . .
Qijk = _K—’ Qpji = Tﬂ, ik = Crji = §(szk + Qkj)  for i <j<k.

Assuming that Q;;r + Qgji # 0 for 1 < j < k, consider a measure defined by

AA+1)

G
¢QS = *'2/\—_1—— for )\ > _1,
where
A A
1 Tk Qji
I()\):______Z Q;k ( l]) —1 +Q* ( J) -1
]k‘ * k?]l * ?
AA+1) o Cijk ijz.
and the value at A = 0 is taken to be the limit as A — 0. Thus,
1
o0 — = 0
QS ™ log ’

where

. Q* . QL.
10 = Z {Qijk log <Ef_k + Qgjilog C]:] -
i<j<k 1jk kji

Note that I*) is the power-divergence between {Qf;} and {CF, ), (fori < j <k
or i > j > k) and especially, I is the Kullback-Leibler information between
them. For more details of the power-divergence I (V)| see Cressie and Read (1984),
and Read and Cressie (1988, p.15). Also, note that I*) = 0 when the QS model

holds, and a real value A is chosen by the user.

Let
Qijk Qurji e
C C
= Q.= — for 1< j<k.
TR Qijk + Qriit T Quik + Qi J
Then the measure may also be expressed as
A

() A2 . . )

q)QS =1- m Z (Qijk + iji) Hijk for X > —1.

<g<k

h
where 1

1) = 3 {1 @™ - (@)}
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When A =0,

(0) 1
el — 1
QS log 2

Z (Q5ix + Qi) Hi(](')lz’
1<j<k
where

0 c
Hi(]‘/z = —Qyjk log Qj — Q;:log Q-

Note that H l(j’\k) is the Patil and Taillie (1982)’s diversity index of degree-A for
{ijk,Qiji}, which includes the Shannon entropy when A = 0, and the Gini

concentration when A = 1. The measure @82 would represent essentially the

weighted sum of the diversity index g

ijk*
We see that the measure @8% must lie between 0 and 1, and for each A, (i)

@82 = 0 if and only if there is a structure of QS in the R x R table, and (ii)

@82 = 1 if and only if the degree of departure from QS is the largest, in the sense
that Qf;; = 0 (then Qi =1) or Qi =0 (then Qfjp = 1) for any i < j < k.

We point out that (Dg\g = 1 indicates that for any « < j < k, pijpjrprs = 0 or
PjiPk;Pik = 0 holds. Thus, this indicates that for any i < j < £, at least one of
pf']-, pjk and pj, is equal to zero, or at least one of Pis D y and pj, is equal to zero;
namely, this indicates that for any ¢ < j < k, the complete asymmetry arises for
at least one pair of symmetric cells, e.g., as p;; = 0, w.e., p5; = 1 (which may
indicate the partial complete asymmetry of cell probabilities).

In addition, we note that the QS model is expressed as

Olicjij<k) _ Diji
Oi<kii<s)  Drji

=1 for i<j<k.

Namely, this describes the symmetry of odds-ratios. So. (Pg\z = 1 means that
Qi = 0 (then Qgj; > 0) or Qrj; = 0 (then Qjx > 0). i.e., Dyjx = 0 (then
Dyji > 0) or Dyji = 0 (then D;j > 0); namely this means that D;j./Dy i = 0
or oo for 7 < j < k which would indicate the complete asymmetry of odds-ratios.
Thus, it would be natural to consider that then the departure from the symmetry
of odds-ratios (i.e., from QS) is the largest.

According to the power-divergence or the weighted sum of the Patil-Taillie

(M)

diversity index, (I)QS represents the degree of departure from QS. and the degree

. A .
increases as the value of (D(QZ increases.
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2.2. Measure for Bradley-Terry model

Consider a set of data from R(R — 1)/2 paired comparison experiments for
R treatments. Let r;; be the number of comparisons for the treatment pair
(¢.7), and n;; the number that the treatment 7 exceeds the treatment j in the r;;
comparisons. Assuming that there is no tie we have r;; = r;; = n;; + nj. Let
m;; be the probability that the treatment i exceeds the treatment j in a single
comparison of the pair. We have m;; + 7;; = 1 excluding the possibility of ties.
The probability for {n;;}, i # j, is then the product of R(R — 1)/2 binomials,

'rij! nij nji
| z]'n]-jwij i (2.2)
1<i<j<R
The BT model is defined by
Ad L,
Tij = Wy for 1 # J.

Also, this model may be expressed as

Gijlc = iji for ¢ <7 <k,

where

Gijk = TijTieTri, Grji = T TjiTik-

We assume that Gyjr + Gij; # 0 for @ << j < k. Then, the BT model may be
expressed as

Gijk = Gy for 1 <j <k,
where
_ Gk e G
Gijk + Grji * 7 Gup + Gryi'

For example, consider the athletic competitions described in Section 1. The

[
Gijx =

BT model indicates that the probability that team i defeats team j, team j
defeats team k, and team k defeats team ¢, is equal to the probability that j
defeats ¢, ¢ defeats k, and k defeats j. We shall now say that the stochastic
three-way deadlock arises when the probability that ¢ defeats j, j defeats &, and
k defeats i is larger or smaller than (i.e., not equal to) the probability for the
reverse order. Thus, the BT model may indicate that for any three teams of R
teams. the stochastic three-way deadlock does not arise.
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It is seen that the BT model is essentially equivalent to the QS model. Thus,

we shall define the measure @5{;\% (for A > —1), which represents the degree of

departure from the BT model, by @82 with {pf;} replaced by {m;;}.

We note that the measure (I>([;\} lies between 0 and 1, and also (i) <I>(é\,])v =0
if and only if the BT model holds, and (ii) @g} = 1 if and only if the degree of
departure from the BT model is a maximum. Thus, e.g., for the case of athletic

competitions, (i) @g\% = 0 indicates that for any three teams of R teams, the

stochastic three-way deadlock does not arise, however, (ii) (I’(é\:)r = 1 indicates

that for any three teams of R teams, the strongest stochastic three-way deadlock
arises; namely, the conditional probability that ¢ defeats j, j defeats k, and &
defeats i on condition that ¢ defeats j, j defeats k, and k defeats i, or j defeats
i, 1 defeats k, and k defeats j, is 1 or 0; because then Gf;; =1 (then szi =0)

1
or Gi; =1 (then G{;; = 0).

3. APPROXIMATE CONFIDENCE INTERVALS FOR MEASURES

We shall consider an approximate standard error and large-sample confidence

interval for the measures (I)Sg and Q(I;} (say, ®N), using the delta method, as

described by Bishop et al. (1975, Section 14.6) and Agresti (1990, Section 12.1).
The sample version of @8;, ie., @8‘%, is given by @8‘; with {p;;} replaced by
{pij}, where p;; = ni;/n. Similarly, the @g\% is given by @é\% with {m;;} replaced

by {7i;}, where 7;; = n;;/r;;. Using the delta method, ®N) has asymptotically
a normal distribution with mean ®*) and variance o2[®™]. The ¢2[®™)] are

given in Appendix.

The measure EI;g\g is applied to a multinomial sampling, and E[;(é\j) is applied

to the independent binomial sampling. So, 02[58;] with {pf;} replaced by {m;},

i # 7, is not always identical to 02[6(,3*7)] except when {p;; + p;;} are equal to
{{nij+nj)/n}in 02[&582] see Appendix. Let 52 [:I\)g\;] denote 02[(1\)8;] with {p;;}
replaced by {p;;}. Similarly, let 82[<I>(1;\7)] denote 02[@(3)\7)«] with {7;;} replaced by
{mi;}. Noting that {p;; + Dji = (ni; +nji)/n} in 32[58;], we point out that the

estimated variance 82[68%] is theoretically identical to the estimated variance

c? [ZI;(I;\%] see Appendix.
The approximate confidence intervals for the measure ®*) can be obtained
using the G[@M)].
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TABLE 1 Cross-classification of father’s and his son’s social class; taken from Hashimoto
(1999, p. 151)

(a) Ezamined in 1955.

Son’s class
Father’s class  Capitalist New-Middle Labor  Self-Support Peasantry  Total
Capitalist 39 39 39 57 23 197
New-Middle 12 78 23 23 37 173
Labor 6 16 78 23 20 143
Self-Support 18 80 79 126 31 334
Peasantry 28 106 136 122 628 1020
Total 103 319 355 351 739 1867

(b) Ezamined in 1995

Son’s class
Father’s class  Capitalist New-Middle Labor  Self-Support Peasantry  Total
Capitalist 68 48 36 23 1 176
New-Middle 33 191 102 33 3 362
Labor 25 147 229 34 2 437
Self-Support 48 119 146 129 5 447
Peasantry 40 126 192 82 88 528
Total 214 631 705 301 99 1950

4. EXAMPLES

4.1. Ezxample 1

Consider the data in Table 1, taken from Hashimoto (1999, p.151). These
data describe the cross-classification of father’s and his son’s social class in Japan
which were examined in 1955 and 1995.

For these data, we shall apply the measure @8% Since the confidence intervals
for the measure @8‘; applied to the data in Table 1(a) do not contain zero for
each A\ (see Table 2(a)), these would indicate that there is-not a structure of
the QS model between the social ranks of father-son pairs. On the other hand.
since the confidence intervals for the measure @g\; applied to the data in Table
1(b) contain zero for each A (see Table 2(b)), these may indicate that there is a
structure of the QS model between them.

When the degrees of departure from the QS model in Tables 1(a) and 1(b) are

compared using the estimated measure @839 (see Table 2), for each A. the value

of 68% is greater for Table 1(a) than for Table 1(b). So. the degree of departure
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TABLE 2 Estimate of measure <I>(Q’\bz, estimated approrimate standard error for <'I\>(Q’\3 and

approzimate 95% confidence interval for @g\g, applied to Tables 1(a) and 1(b)

(a) For Table 1(a)
Estimated  Standard Confidence

A measure error interval
-0.2 0.078 0.032 (0.015, 0.141)
0.0 0.089 0.036 (0.018, 0.160)
0.2 0.098 0.039 (0.021, 0.175)
0.6 0.110 0.043 (0.026, 0.195)
1.0 0.117 0.045 (0.028, 0.205)
1.8 0.118 0.045 (0.029, 0.207)
2.4 0.113 0.044 (0.026, 0.199)

(o) For Table 1(b)
Estimated  Standard Confidence

A measure error interval
-0.2 0.023 0.020 (—0.015, 0.062)
0.0 0.027 0.023 (—0.018, 0.072)
0.2 0.030 0.025 (—0.020, 0.080)
0.6 0.035 0.029 (—0.022, 0.092)
1.0 0.037 0.031 (—0.024, 0.098)
1.8 0.038 0.031 (—0.024, 0.099)
2.4 0.036 0.030 (—0.023, 0.094)

from the QS model is greater for Table 1(a) than for Table 1(b). Namely, the data
in Table 1(a) rather than in Table 1(b) are estimated to be close to the mazimum
departure from the QS model, i.e., the complete asymmetry of odds-ratios (or
the partial complete asymmetry of cell probabilities).

We note that the mazimum departure from the QS model indicates that for
any three father-son pairs with the social ranks (7,7), (j.k) and (k.i), ¢ # 7, j # k.,
k # 1, the probability that the ranks for first father-son pair moved to the son’s
rank j from his father’s rank 4, those for second pair moved to k from j, and those
for third pair moved to ¢ from k. is zero (not zero). however, the probability that
those for first pair moved to the son’s rank 7 from his father’s rank j, those for
second pair moved to k from ¢, and those for third pair moved to j from £k, is
not zero {zero): namely, the stochastic circular social mobility arises among any
three father-son pairs (when the degree of departure from the S model is a
maximum).
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TABLE 3 Values of power-divergence statistic Wé’? (with 6 degrees of freedom), applied to
Tables 1(a) and 1(b)

A For Table 1(a) For Table 1(b)

—0.2 22.23 5.83
0.0 22.13 5.83
0.2 22.06 5.83
0.6 21.95 5.83
1.0 21.90 5.85
1.8 21.99 5.91

NoTE. We denote the power-divergence statistic for testing goodness-of-fit of
the QS model with (R—1}(R—2)/2 = 6 degrees of freedom by Wq()/\s) See Cressie
and Read (1984) and Read and Cressie (1988, p.15) for details of the power-
divergence test statistic. In particular, 'WC(QOS) and Wc(gls) are the likelihood ratio
and the Pearson’s chi-squared statistics, respectively. Table 3 gives the values of
ng applied to the data in Tables 1(a) and 1(b). The data in Table 1(a) fit the
QS model poorly, however, the data in Table 1(b) fit the QS model well.

TABLE 4 Score sheet of the Pacific League in Japan in 1995 and 2002

(a) 1995
Lions  Buffaloes Hawks Marines Fighters Bluewave Total
Lions - 18 14 15 15 5 67
Buffaloes 7 - 10 13 11 8 49
Hawks 9 16 - 5 11 13 54
Marines 10 12 21 - 13 13 69
Fighters 10 14 14 13 - 8 59
Bluewave 21 18 13 12 18 - 82
Total 57 78 72 58 68 47 380
(b) 2002
Lions  Buffaloes Hawks Marines Fighters Bluewave Total
Lions - 15 16 19 18 22 90
Buffaloes 13 - 14 12 15 19 73
Hawks 12 13 - 18 15 15 73
Marines 8 16 10 - 18 15 67
Fighters 10 13 12 10 - 16 61
Bluewave 6 8 13 13 10 - 50

Total 49 65 65 72 76 87 414
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4.2. Example 2

The data in Tables 4 gives the results of the professional baseball league in
Japan in 1995 and 2002. For instance, from Lions’s perspective. the (Lions.
Buffaloes) results in 1995 correspond to 18 successes and 7 failures in 25 trials.

TABLE 5 Estimate of measure @53’\%, estimated approzimate standard error for @5;%, and
approzimate 95% confidence interval for fbg\}-, applied to Tables {(a) and 4(b)

(a) For Table 4(a)
Estimated  Standard Confidence

A measure error interval
-0.2 0.152 0.058 (0.039, 0.266)
0.0 0.173 0.064 (0.047, 0.299)
0.2 0.189 0.068 (0.055, 0.323)
0.6 0.210 0.074 (0.066, 0.354)
1.0 0.221 0.076 (0.072, 0.370)
1.8 0.223 0.076 (0.074, 0.372)
2.4 0.215 0.075 (0.068, 0.362)

(b) For Table {(b)
Estimated Standard Confidence

A measure error interval

—0.2 _ 0.057 0038  (-0.017, 0.132)
0.0 0.066 0.044 (-0.019, 0.152)
0.2 0.074 0.048 (=0.021, 0.168)
0.6 0.084 0.054 (—0.022, 0.190)
1.0 0.089 0.057 (—0.023, 0.201)
1.8 0.090 0.058 (—0.023. 0.204)
2.4 0.086 0.055  (—0.023, 0.194)

For these data, we shall apply the measure @g‘%. Since the confidence intervals

for the measure @g\% applied to the data in Table 4(a) do not contain zero for

each X (see Table 5(a)), these would indicate that there is not a structure of the
BT model between the teams in Pacific League in 1995. On the other hand.
since the confidence intervals for the measure @S;‘% applied to the data in Table
4(b) contain zero for each A (see Table 5(b)), these may indicate that therc is a
structure of the BT model between the teams in Pacific League in 2002.

When the degrees of departure from the BT model in Tables 4(a) and 4(b)
are compared using the estimated measure E)S;\} for each A. the value of ZI;([;\I) 18
greater for Table 4(a) than for Table 4(b). So. the degree of departure from the
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BT model is greater for Table 4(a) than for Table 4(b). Namely, the data in 1995
rather than in 2002 are estimated to be close to a situation with the strongest
stochastic three-way deadlock, which indicates that for any three teams, 7, 7 and
k, the conditional probability that team 7 defeats team j, team j defeats team
k, and team k defeats team 4 on condition that i defeats j, j defeats k, and &
defeats i, or j defeats i, ¢ defeats k, and k defeats j, is 1 or 0.

TABLE 6 Values of power-divergence statistic VV](;T) (with 10 degrees of freedom), applied to
Tables 4(a) and 4(b)

A For Table 4(a) For Table 4(b)

—0.2 21.81 8.40
0.0 21.55 8.38
0.2 21.33 8.37
0.6 20.98 8.35
1.0 20.75 8.34
1.8 20.61 8.34

NoOTE. We denote the power-divergence statistic for testing goodness-of-fit
of the BT model with (R — 1)(R — 2)/2 = 10 degrees of freedom by W5y, Table
6 gives the values of Wg\T) applied to the data in Tables 4(a) and 4(b). The data
in Table 4(a) fit the BT model poorly, however, the data in Table 4(b) fit the BT

model well.

5. CONCLUDING REMARKS

Since the measures @8; (@g‘%) always range between 0 and 1 independent of

the dimension R and sample size n ({r,;}), those may be useful for comparing
the degree of departure from the QS (BT) model in several tables.

The measure @8‘; would be useful when we want to see with a single sum-
mary measure what degree the departure from the QS model (i.e., the symmetry
of odds-ratios) is toward the complete asymmetry of odds-ratios or the partial
complete asymmetry of cell probabilities.

The measure (I)E,;\% would be useful when we want to see with a single summary
measure, for example, for the athletic competitions, how strong the stochastic
three-way deadlock for any three teams c¢f R teams arises toward a situation with
the strongest stochastic three-way deadlock, which indicates that the conditional
probability that ¢ defeats j, j defeats k. and k defeats 7 on condition that ¢ defeats



MEASURE FROM QUASI-SYMMETRY MODEL 141

7, j defeats k. and k defeats i, or 7 defeats i, i defeats k, and & defeats 5. is 1
or 0; thus, this indicates that at least one team. e.g., team i, among any three
teams 4, j and k of R teams, is always defeated by one of the other teams.

The measures @8; ((ID%\%) are invariant under the arbitrary simultaneous per-
mutations of row and column categories, and therefore it is possible to apply
these measures for analyzing the data on a nominal scale, and also possible for
analyzing the data on an ordinal scale if one may not use the information about
the order of listing the categories.

We note that the properties of measures @8; (@%\%) are similar to the previous
works of Tomizawa in References; and so we omit the various properties of the

measures.

TABLE 7 Artificial data (Tables 7(a) and 7(b)), the corresponding estimated measure &385),
estimated approzimate standard error for ;I;g\s), approzimate 95% confidence interval for fI'(Q'\S),
and the values of power-divergence statistic W'&g) (with 8 degrees of freedom), applied to Tables

7(a) and 7(b)

{a) n=11520 (sample size) (b) n=51 (sample size)
(1) (2 (3 (4 (1) (2 (3 ()
(1) 2004 600 540 360 (1) 1 2 1 4
(2) 120 1572 600 828 (2) 1 3 3 1
3) 540 600 240 1200 3) 6 2 1 7
(4) 144 600 576 996 (4) 8 5 4 2
(c) Values of CIJ(Q>‘§
For Table 7(a) For Table 7(b)
Estimated  Standard Confidence Estimated  Standard Confidence
A measure error interval measure error interval
—0.2 0.125 0.017 (0.091, 0.160) 0.424 0.288 (—0.140, 0.988)
0.0 0.143 0.019 (0.105, 0.181) 0.464 0.294 (—=0.112, 1.039)
0.6 0.175 0.023 (0.131, 0.220) 0.523 0.289 (—0.044, 1.090)
1.0 0.185 0.023  (0.139, 0.231) 0.536 0.285  (—0.022, 1.095)
1.6 0.188 0.024 (0.141, 0.234) 0.540 0.283 (—0.015, 1.095)

(d) Values of W53
A For Table 7(a) For Table 7(b)

-0.2 173.18 4.36
0.0 170.91 4.36
0.6 165.25 4.40
1.0 162.33 4.50

1.6 159.04 4.74
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As a referee comments, we note that it may be dangerous to compare two
data sets (say, A and B) with the great different sample sizes by using only the
estimated measure 58‘; (or @g‘%) For example, consider the data in Tables 7(a)
and 7(b) (the sample sizes are n = 11520 for Table 7(a) and n = 51 for Table 7(b)).
We see now that e.g., for A = 1, the values of ;I;(Ql)s are 0.185 for Table 7(a) and
0.536 for Table 7(b) (see Table 7(c)); however, the values of power-divergence test
statistic ng are 162.33 for Table 7(a) and 4.50 for Table 7(b) with 3 degrees of
freedom (see Table 7(d)). So, there is a situation that the data set A is statistical
significant and the data set B is not, but the values of 58‘% indicate the reverse
relation, when the sample size of data set A is far bigger than the sample size
of data set B. It seems difficult that we describe the relation between the degree
of departure from the model and the results of testing hypothesis of the model.
Since the measure ZISS‘; does not take account of the sample sizes while the p
values do, it may be dangerous to compare the results of testing hypothesis of

the model using only the measure 58‘;

When we consider the values of standard error for the measure (/I\)(c;; and

compare the values of confidence interval of @g\; for Tables 7(a) and 7(b) (see
Table 7(c)), those for Table 7(a) do not contain the zero, but those for Table
7(b) do. These would indicate that Table 7(a) does not have a structure of QS
but Table 7(b) may have it. Therefore, we should pay attention to compare the

degree of departure from QS by using only the values of estimated measure EI;(Q)\;

(not the confidence interval of @8‘;) when we compare the two data sets with the
great different sample sizes (with the great different standard errors).

For analyzing the degree of departure from the QS (BT) model, the analyst
would check whether or not the QS (BT) model holds by using a test statistic,
such as Wg:q) (Wl(s/\))- We note then that even if it is judged that there is a
structure of the QS (BT) model in the table by the test statistic, it would be
meaningful to measure the degree of departure from the QS (BT) model toward

the maximum departure by using the estimated measure 58; (&)g\%)
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APPENDIX

A. Appendiz 1

First, we shall consider 02[&;(1;\%}. Suppose that the probability for the data
{ni;}, i # j, is the product of R(R — 1)/2 binomials given by (2.2). Then let 7'
be the 1 x R(R - 1) vector

N N ~1 1
™ = <'IT(]2), 7T(13), e 77r(R~1,R)) ,
where "/ denotes the transpose and
-~/ ~ ~ . .
Ty = (M), 0 <7,
~ Ty g

Tij T M

Also, let us define the vector 7 in terms of m;;’s in the same way as 7. Then 7
s asymptotically distributed as normal N{x, V(w)), where V{(x) is the R(R —
1) x R(R — 1) matrix,

V12(7r) 0 0
vim=| ° Vel . ,
0 0 Vg_ir(m)

where
Vi(m) = — ( mi(1 = mig) =y ) i<
' —mijmii Wil =)
We also obtain

&%) = o) 1 dy(m)(F — ) + o(|7 — =),

where dy () = 8<I>B)‘T/(97r being the 1 x R(R—1) vector. Using the delta method.

Zﬁg‘j) is asymptotically distributed as normal N($ 53} 2[(3&;‘7),])’ where

G BD)] = di(m )V(Tr)dl( )
—1

_ a AN L (0 CYRETIONA
= i 2 3 () () (),

s=1 t=s+1

=

\ |
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where ABT = Yicj<k (Gijk + Giji), and for A > —1 and X # 0,

Wi = [Z {0 (G200 + 26 (1G5 - (61" )

k=t+1

+Z{ i (G5 + GGy (G5 — (G1) }

t—1
£ 30 {60 (65 + 260G, ((65.)" ~ (650°) )
j=s+1
— ) A
( > Gst“’ZG”“L Z GUS)' 1?2:1)BT+1} 2A2_1’
k=t+41 J=s+1
R
VY = |3 {Grs (G + AGhisGlu (G5 - (G5*) }

k=t+1

+Z{Gt“ ¢ )+ AGisiGS,, ((Gfm) — (Gl )}

i Z {Gs]t € +/\Gs;tG%s((G(§yt) - (Gs) >}

71=s+1
2 —1)el) +1] 2
( Z ths+ZGtsz+ Z ngt) ( )2/\ B o _ 1’
k=t+1 J=s+1

and where for A = 0,

§—1 t—1
wl = [ 3 GanlogGlu+ S GigtlogGoy+ Y Gijulog GS,

k=t+1 =1 Jj=s+1

{ Z Gstk+Zth - Z G“s}( 1> 10g2} Eé;-i’

k=t+1 J=s+1

s—1 t—-1
Vtgm = { Z Gres log Giys + Z G5 log Gy, + Z Gsjtlog G5
k=t+1 1=1 J=s+1

{ 3 th5+}:Gm+ Z Gg,t}( >log2

k=t+1 J=s+1
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The estimate of 02[6(;%] is given by 62[&)(;%] which is 02[5&;‘%] with {m;;} replaced
by {mi;}.
B. Appendiz 2

Secondly, we shall consider o2 3N, Suppose that the data {n;;} have a
QS J

multinomial distribution given by (2.1). Let p’ be the 1 x R? vector

p = (ﬁl(n)’ﬁzl?))v e 71521?-1,1%)’1711’ e ’ﬁRR) ’

where
Pujy = 0ig.hji), <4,
~ Nyj Ny
bij = — Dii=—"—-
n n

Also, let us define the vector p in terms of p;;’s in the same way as p. Then p is
asymptotically distributed as normal N(p, £,(p)), where ¥(p) is the R? x R2
matrix,

Tip) = 3—1 (D(p) - pp'),

th

where D(p) denotes a diagonal matrix with the 5** element of p as the i diagonal

element. We also obtain
BH% = ®0% + da(p) (B — p) + o(lIB — plI),
where do(p) = 8@8&/8})’ being the 1 x R? vector. Thus, &;z\g is asymptotically
distributed as normal N (q)g\;, 02[582]) where
o2 [B5%] = da(p) =1 (p)da(p)'.

Let p¢ be the 1 x R(R — 1) vector

7

p’ = (p?w)-pflfs)’“"pER—lvR))’

where
Py = 05p5), 1<,
X Dis
P = Lu

pi; + Pji.
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Then, noting that @82 is a function of only {pf]} we obtain

8@) A op°

Note that B@g‘g/ﬁpcl is the 1 x R(R—1) vector and 8p°/dp’ is the R(R—1) x R?
matrix. By obtaining dp®/9dp’, we can see that o [<I>< ) ] is expressed as

e 09
215 QS
ag [¢QS] apcl . 2 p 8 c

where ¥o(p) is the R(R — 1) x R(R — 1) matrix,

212(p) 0 0
S, (p) = 0 Z13(p) ,
0
0 0 Xr_1r(p)
where
Eij(p) _ 1 ( p%(l —pfj) “ngjp;i > , i< ]
n (pij + pi) -pip% Pl —p%)

Therefore 02[‘58%] is identical to 02[@;%] with {m;;} and {ri;(= ni; + nj)}
replaced by {pf;} and {n(p;; + p;i)}, respectively. The estimate of o [(I>('\)]

is given by 82[51\)8;] which is 02[51\)8%] with p;; replaced by p;; = n;j/n (thus

ﬁfj = n;j/(nij + nj;)). Therefore, we point out that 82[58‘;] is identical to
5@ 5.
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