• Title/Summary/Keyword: entrained air

Search Result 118, Processing Time 0.037 seconds

A Study on the Development of Combustor for Turbocharger Test Facilities (터보챠저 구동용 연소기 개발에 관한 연구)

  • Oh, Kook-Taek;Park, Boo-Min;Kim, Hong-Won;Ryu, Seung-Hyup;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.43-48
    • /
    • 2001
  • Combustor design technique is established by reverse engineering of existing combustor and applying heat & mass balance equations for the combustion process. The ratio of entrained air for each air slot is found to be almost proportional to the area ratio from the result of numerical simulation. The shape of the combustor is modified by the numerical analysis to get circumferentially uniform flow inside the combustion chamber required for the flame stability.

  • PDF

A Study on the Design of High-Frequency Jet Ventilator Using PLL system (위상동기루프 방식을 이용한 고빈도 JET환기장치의 설계에 관한 연구)

  • Lee, Joon-Ha;Chung, Jae-Chun
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 1989
  • This paper describes to design and to examine the mechanical characteristics of high frequency jet ventilator. The device consists of Phase lock loop(PLL) system, solenoid valve driving control part and Air regulating system. This study is carried out by changing several factors such as endotracheal tube(E.T. tube)diameter, injector cannula diameter, 1%, and frequency(breaths/mim.) having direct effects on the gas exchange as well as parameters of the entrained gas by venturi effects, so as to measure the tidal volume and minute volume. This system characteristics were as follows : 1) Frequency : 6-594bpm 2) Inspiration time : 1-99% 3) Variance of input air pressure : 1-30PSI.

  • PDF

CFD Prediction on Vortex in Sump Intake at Pump Station (펌프 흡수정내 발생된 보텍스에 대한 CFD 예측)

  • Park, Sang-Eun;Roh, Hyung-Woon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.39-46
    • /
    • 2007
  • In large pump station, vortex generation such as free-surface vortex and submerged vortex occurring around pump intake, or at bell-mouth inlet has been an important flow characteristics which should be considered always to keep away the suction of air-entrained or cavitated flow. In this study, a commercial CFD code was used to predict accurately the vortex generation for the specified intake design. These result shows the preliminary result of submerged vortex prediction for the Turbo-machinery Society of Japan Sump Test CFD standard model. At bottom wall, air volume fraction (red color) was found in a large scale to explain the submerged vortex generation at particular operation and configuration condition. And these indicate the free surface formation behind the bell mouth. Particularly, non-uniform approaching flow is a major parameter to govern the occurrence of the free-surface vortex. Futhermore the comparison between turbulence ($k-{\epsilon}$ & $k-{\omega}$ model) mode were executed in this study.

Characteristics of centrifugal pump according to the shape of impeller (임펠러 형상에 따른 원심펌프의 특성)

  • Kim, S.Y.;Kim, Y.T.;Nam, C.D.;Lee, Y.H.;Kang, H.K.;Kim, S.D.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.43-44
    • /
    • 2005
  • The effect of break down of centrifugal pump due to entrained air has not been clarified yet. Thus, air-water two-phase flow experimental apparatus was installed to clarify the effect of break down. The performance results of a single-phase flow satisfied reappearance. Also, the heads coincided well impeller types.

  • PDF

PIV Investigations of the Flow Mixing Enhancement by Pulsatile Flow in a Grooved Channel (맥동유동에 의한 그루브 채널내 유동혼합 촉진에 관한 PIV 이용 연구)

  • 김동욱;김서영;이대영;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.324-331
    • /
    • 2004
  • Particle Image Velocimetry (PIV) measurements have been carried out to investigate the pulsatile flow characteristics in a triangular grooved channel. The results showed that a vortex was generated at the tip of the groove and flowed into the groove rotating inside during the acceleration phase of the main stream promoting the mixing of the fluid. Then, at the deceleration phase of the main stream, the vortex entrained fluid from the relatively slow moving main stream to grow bigger than the groove size. Finally the vortex was ejected to the main stream carrying the fluid away from the groove, resulting in the enhancement of mixing between the stagnant fluid in the groove and the main stream in the channel. It was found that the fluid mixing enhancement is maximized when the pulsatile period is the same as the time duration which the vortex takes to grow larger enough to fill the groove and to be ejected to the main stream.

Thermal Performance of the Microencapsulated PCM

  • Lee, Hyo-Jin;Lee, Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • Microencapsulated pcm (MPCM) particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane ($C_14$$H_30$, $T_m$=5.5$^{\circ}C$) is capsulated in the core, coated with the melamine for their surface. The size of particles is well-controlled under 10$\mu$m in the process of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentractions of slurries are prepared for 20 wt%, 30 wt%, and 40 wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose flow rates are varied by 125 cc/min, 250 cc/min, and 500 cc/min. However, MPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MPCM particles restrict their heat transfer in terms of natural convection and conduction to them.

Visualization of Gas/liquid Ejector Flow and Void Fraction Measurement using Fiber Optic Probe (기체-액체 이젝터 유동의 가시화와 광섬유 탐침에 의한 기포분율 측정)

  • Choi, Sung Hwan;Ji, Ho Seong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Gas/liquid two-phase ejector is a device without moving parts, in which liquid is used to drive gas of a low-pressure source. In this paper, the hydrodynamic characteristics of a vertical down type two-phase ejector were studied using an air-water loop system. Entrained air flow rates were measured with inlet and outlet pressures of the ejector with varying water flow rate. Homogeneous bubbly flows in the discharge pipe were confirmed by the high speed flow visualization method. Quantitative measurements of void fraction were made using a newly developed fiber optic probe system.

A Experimental Study on the Freezing and Thawing of High-Strength Light Weight Aggregates Concrete (고강도 경량골재콘크리트의 동결융해에 대한 실험적 연구)

  • 박정권;최세규;한상묵;김생빈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.155-161
    • /
    • 1997
  • This Expriment is performed to describe the properties of the freezing-thawing and to find the method to enhance the freezing-thawing resistance of the high strength light weight aggregates concrete. For this purpose, we made 8 kinds of specimen of concrete mold. The light weight coarse aggregate concrete which contained AE was appeared in good condition and its durability index was more than 90% by the buffer action which owing to entained air. The light weight aggregates concrete which admixture of silca fume, was appeared that the durability index was 46.74% in spite of its high strength. I might conclude that the most important factor for freezing-thawing resistance of high strength light weight aggregate concrete is the entrained air.

  • PDF

Experimental Study on the Microencapsulated PCM as a Thermal Storage Medium (미립잠열재를 이용한 축열 특성에 관한 실험적 연구)

  • 이효진;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • Microencapsulated PCM particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane(C$_14H_30, T_m=5.5^{\circ}C$) is capsulated in the core with the melamine of its surface. The size of particles is well-controlled under 10${\mu}{\textrm}{m}$ in the way of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentrations of slurries are prepared for 20wt%, 30wt%, and 40wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose tank whose flow rates are varied by 125cc/min, 250cc/min, and 500cc/min. However, MicroPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MicroPCM particles control its heat transfer in terms of natural convection and conducting to them.

  • PDF

Fundamental Properties Polymer-Modified Mortars Using Re-dispersible Polymer Powder (재유화형 폴리머를 혼입한 폴리머 시멘트 모르타르의 기초적 특성)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.37-43
    • /
    • 2018
  • According to the evaluation of basic properties and mechanical characteristics of polymer cement mortars that contain re-dispersible type polymer, in the case of fresh mortars, flow and air content were increased due to the dispersion action of entrained air and surfactant with an increase of polymer addition ratio. In the case of mortars after hardening, flexural strength, bonding strength, absorption rate and carbonation resistance were improved due to the increased union and waterproof characteristics of internal structures as a result of the formation of polymer film.