• Title/Summary/Keyword: ensemble projection

Search Result 20, Processing Time 0.025 seconds

Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models (GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망)

  • Bae, Deg-Hyo;Jung, Il-Won;Lee, Byung-Ju;Lee, Moon-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • The objective of this study is to examine the climate change impact assessment on Korean water resources considering the uncertainties of Global Climate Models (GCMs) and hydrological models. The 3 different emission scenarios (A2, A1B, B1) and 13 GCMs' results are used to consider the uncertainties of the emission scenario and GCM, while PRMS, SWAT, and SLURP models are employed to consider the effects of hydrological model structures and potential evapotranspiration (PET) computation methods. The 312 ensemble results are provided to 109 mid-size sub-basins over South Korean and Gaussian kernel density functions obtained from their ensemble results are suggested with the ensemble mean and their variabilities of the results. It shows that the summer and winter runoffs are expected to be increased and spring runoff to be decreased for the future 3 periods relative to past 30-year reference period. It also provides that annual average runoff increased over all sub-basins, but the increases in the northern basins including Han River basin are greater than those in the southern basins. Due to the reason that the increase in annual average runoff is mainly caused by the increase in summer runoff and consequently the seasonal runoff variations according to climate change would be severe, the climate change impact on Korean water resources could intensify the difficulties to water resources conservation and management. On the other hand, as regards to the uncertainties, the highest and lowest ones are in winter and summer seasons, respectively.

Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo (함경북도 내 미래 알팔파 재배의 기후적합도 앙상블 전망)

  • Hyun Seung Min;Hyun Shinwoo;Kim Kwang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.71-82
    • /
    • 2024
  • It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.

The Characteristics of the Change of Hadley Circulation during the Late 20th Century in the Current AOGCMs (현 기후 모델에서 모의되는 20세기 후반 해들리 순환 변화의 특징)

  • Shin, Sang-Hye;Chung, Il-Ung
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.331-344
    • /
    • 2012
  • The changes in the Hadley circulation during the second half of the 20th century were examined using observations and the 20C3M (Twentieth Century Climate in Coupled Models) simulations by the 21 IPCC AR4 models. Multi-model ensemble (MME) mean shows that the mean features of the Hadley circulation, such as the intensity, magnitude, and the seasonal variations, are very realistically reproduced, compared to the ERA40 reanalysis. But the long-term trends of the Hadley circulation in 20C3M MME are quite different to those of observations. The observed intensity of the Hadley cell is persistently enhanced, particularly during boreal winter. In comparison, the meridional overturning circulations reproduced in the MME mean remains invariant in time, and even weakened in boreal summer. This discrepancy between the ERA40 and 20C3M MME is consistently shown in the overall structure of the Hadley circulations, such as mass streamfunction, the velocity potential, the vertical shear of meridional wind, and the vertical velocity in the tropical region. This results indicate that the current climate models are skill-less to capture the long-term trend of Hadley circulation yet, and should be improved in simulation of the large-scale features to enhance the confidence level of future climate change projection.

Projection of Future Changes in Drought Characteristics in Korea Peninsula Using Effective Drought Index (유효가뭄지수(EDI)를 이용한 한반도 미래 가뭄 특성 전망)

  • Gwak, Yongseok;Cho, Jaepil;Jung, Imgook;Kim, Dowoo;Jang, Sangmin
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.31-45
    • /
    • 2018
  • This study implemented the prediction of drought properties (number of drought events, intensity, duration) using the user-oriented systematical procedures of downscaling climate change scenarios based the multiple global climate models (GCMs), AIMS (APCC Integrated Modeling Solution) program. The drought properties were defined and estimated with Effective Drought Index (EDI). The optimal 10 models among 29 GCMs were selected, by the estimation of the spatial and temporal reproducibility about the five climate change indices related with precipitation. In addition, Simple Quantile Mapping (SQM) as the downscaling technique is much better in describing the observed precipitation events than Spatial Disaggregation Quantile Delta Mapping (SDQDM). Even though the procedure was systematically applied, there are still limitations in describing the observed spatial precipitation properties well due to the offset of spatial variability in multi-model ensemble (MME) analysis. As a result, the farther into the future, the duration and the number of drought generation will be decreased, while the intensity of drought will be increased. Regionally, the drought at the central regions of the Korean Peninsula is expected to be mitigated, while that at the southern regions are expected to be severe.

Strategies to improve the range verification of stochastic origin ensembles for low-count prompt gamma imaging

  • Hsuan-Ming Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3700-3708
    • /
    • 2023
  • The stochastic origin ensembles method with resolution recovery (SOE-RR) has been proposed to reconstruct proton-induced prompt gammas (PGs), and the reconstructed PG image was used for range verification. However, due to low detection efficiency, the number of valid events is low. Such a low-count condition can degrade the accuracy of the SOE-RR method for proton range verification. In this study, we proposed two strategies to improve the reconstruction of the SOE-RR algorithm for low-count PG imaging. We also studied the number of iterations and repetitions required to achieve reliable range verification. We simulated a proton beam (108 protons) irradiated on a water phantom and used a two-layer Compton camera to detect 4.44-MeV PGs. Our simulated results show that combining the SOE-RR algorithm with restricted volume (SOE-RR-RV) can reduce the error of the estimation of the Bragg peak position from 5.0 mm to 2.5 mm. We also found that the SOE-RR-RV algorithm initialized using a back-projection image could improve the convergence rate while maintaining accurate range verification. Finally, we observed that the improved SOE-RR algorithm set for 60,000 iterations and 25 repetitions could provide reliable PG images. Based on the proposed reconstruction strategies, the SOE-RR algorithm has the potential to achieve a positioning error of 2.5 mm for low-count PG imaging.

Projection of Future Sea Level Change Based on HadGEM2-AO Due to Ice-sheet and Glaciers (HadGEM2-AO 기반의 빙상과 빙하에 의한 미래 해수면 변화 전망)

  • Kim, Youngmi;Goo, Tae-Young;Moon, Hyejin;Choi, Juntae;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.367-380
    • /
    • 2019
  • Global warming causes various problems such as the increase of the sea surface temperature, the change of coastlines, ocean acidification and sea level rise. Sea level rise is an especially critical threat to coastal regions where massive population and infrastructure reside. Sea level change is affected by thermal expansion and mass increase. This study projected future sea level changes in the 21st century using the HadGEM2-AO with RCP8.5 scenario. In particular, sea level change due to water mass input from ice-sheets and glaciers melting is studied. Sea level based on surface mass balance of Greenland ice-sheet and Antarctica ice-sheet rose 0.045 m and -0.053 m over the period 1986~2005 to 2081~2100. During the same period, sea level owing to dynamical change on Greenland ice-sheet and Antarctica ice-sheet rose 0.055 m and 0.03 m, respectively. Additionally, glaciers melting results in 0.145 m sea level rise. Although most of the projected sea level changes from HadGEM2-AO are slightly smaller than those from 21 ensemble data of CMIP5, both results are significantly consistent each other within 90% uncertainty range of CMIP5.

Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming (CMIP5 모델에서 모의되는 지구온난화에 따른 21세기 말 저위도 대기 순환의 변화)

  • Jung, Yoo-Rim;Choi, Da-Hee;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.377-387
    • /
    • 2013
  • Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.

Assessing the Climate Change Impacts on Agricultural Reservoirs using the SWAT model and CMIP5 GCMs (SWAT모형과 CMIP5 자료를 이용한 기후변화에 따른 농업용 저수지 기후변화 영향 평가)

  • Cho, Jaepil;Hwang, Syewoon;Go, Gwangdon;Kim, Kwang-Young;Kim, Jeongdae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.1-12
    • /
    • 2015
  • The study aimed to project inflows and demmands for the agricultural reservoir watersheds in South Korea considering a variety of regional characteristics and the uncertainty of future climate information. The study bias-corrected and spatially downscaled retrospective daily Global Climate Model (GCM) outputs under Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios using non-parametric quantile mapping method to force Soil and Water Assessment Tool (SWAT) model. Using the historical simulation, the skills of un-calibrated SWAT model (without calibration process) was evaluated for 5 reservoir watersheds (selected as well-monitored representatives). The study then, evaluated the performance of 9 GCMs in reproducing historical upstream inflow and irrigation demand at the five representative reservoirs. Finally future inflows and demands for 58 watersheds were projected using 9 GCMs projections under the two RCP scenarios. We demonstrated that (1) un-calibrated SWAT model is likely applicable to agricultural watershed, (2) the uncertainty of future climate information from different GCMs is significant, (3) multi-model ensemble (MME) shows comparatively resonable skills in reproducing water balances over the study area. The results of projection under the RCP 4.5 and RCP 8.5 scenario generally showed the increase of inflow by 9.4% and 10.8% and demand by 1.4% and 1.7%, respectively. More importantly, the results for different seasons and reservoirs varied considerably in the impacts of climate change.

Evaluation of Climatological Mean Surface Winds over Korean Waters Simulated by CORDEX-EA Regional Climate Models (CORDEX-EA 지역기후모형이 모사한 한반도 주변해 기후평균 표층 바람 평가)

  • Choi, Wonkeun;Shin, Ho-Jeong;Jang, Chan Joo
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.115-129
    • /
    • 2019
  • Surface winds over the ocean influence not only the climate change through air-sea interactions but the coastal erosion through the changes in wave height and direction. Thus, demands on a reliable projection of future changes in surface winds have been increasing in various fields. For the future projections, climate models have been widely used and, as a priori, their simulations of surface wind are required to be evaluated. In this study, we evaluate the climatological mean surface winds over the Korean Waters simulated by five regional climate models participating in Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia (EA), an international regional climate model inter-comparison project. Compared with the ERA-interim reanalysis data, the CORDEX-EA models, except for HadGEM3-RA, produce stronger wind both in summer and winter. The HadGEM3-RA underestimates the wind speed and inadequately simulate the spatial distribution especially in summer. This summer wind error appears to be coincident with mean sea-level pressure in the North Pacific. For wind direction, all of the CORDEX-EA models simulate the well-known seasonal reversal of surface wind similar to the ERA-interim. Our results suggest that especially in summer, large-scale atmospheric circulation, downscaled by regional models with spectral nudging, significantly affect the regional surface wind on its pattern and strength.

A Study on the Prediction of Suitability Change of Forage Crop Italian Ryegrass (Lolium multiflorum L.) using Spatial Distribution Model (공간분포모델을 활용한 사료작물 이탈리안 라이그라스(Lolium multiflorum L.)의 재배적지 변동예측연구)

  • Kim, Hyunae;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.103-113
    • /
    • 2014
  • Under climate change, it is likely that the suitable area for forage crop cultivation would change in Korea. The potential cultivation areas for italian ryegrass (Lolium multiflorum L.), which has been considered one of an important forage crop in Korea, were identified using the EcoCrop model. To minimize the uncertainty associated with future projection under climate change, an ensemble approach was attempted using five climate change scenarios as inputs to the EcoCrop model. Our results indicated that most districts had relatively high suitability, e.g., >80, for italian ryegrass in South Korea. Still, suitability of the crop was considerably low in mountainous areas because it was assumed that a given variety of italian ryegrass had limited cold tolerance. It was predicted that suitability of italian ryegrass would increase until 2050s but decrease in 2080s in a relatively large number of regions due to high temperature. In North Korea, suitability of italian ryegrass was considerably low, e.g., 28 on average. Under climate change, however, it was projected that suitability of italian ryegrass would increase until 2080s. For example, suitability of italian ryegrass was more than 80 in 10 districts out of 14 by 2080s. Because cold tolerance of italian ryegrass varieties has been improved, it would be preferable to optimize parameters of the EcoCrop model for those varieties. In addition, it would be possible to grow italian ryegrass as the second crop following rice in Korea in the future. Thus, it merits further study to identify suitable areas for italian ryegrass cultivation after rice using new varieties of italian ryegrass.