• Title/Summary/Keyword: ensemble method

Search Result 511, Processing Time 0.03 seconds

A Molecular Dynamics Computer Simulation Method for the Calculation of Rotational Viscosity of Liquid Crystal Mixture

  • Kim, Jin-Soo;Ahmad, Farzana;Muhammad, Jamil;Park, Sang-Woo;Lee, Jin-Woo;Yun, Hee-Young;Jung, Jae-Eun;Jang, Jae-Eun;Jeon, Young-Jae;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.607-609
    • /
    • 2009
  • We present a Brownian molecular dynamics computer simulation method for calculating the rotational viscosity of the liquid crystal mixture comprising pentylcyanobiphenol (5CB) and decylcyanobiphenol (10CB). Mean director of the ensemble has been used as a nematic director. Results show a good agreement with experimental ones [Sudeshna DasGupta et al., Physics Letters A 306(2003)235-242].

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

Analysis of Preference to Men's Apparel Design by Gender toward Consumers Aged 20-49 (20-49세를 대상으로 성별에 따른 남성복 디자인에 관한 선호도 분석)

  • Kim, Chil-Soon;Lee, Shin-A
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.276-287
    • /
    • 2009
  • Apparel professionals need to understand the customer to effectively develop, select, and promote apparel products. Analysis of consumer preferences can help in the creative design process. Therefore the purpose of this study was to identify consumer preference by gender in two segmented group; $20{\sim}34$ aged group and $35{\sim}49$ aged group toward men's apparel consumers, considering target customers and female influences on men's wear purchasing. We used questionnaires that were distributed to 600 males and females aged in their 20s to 40s, using stratified sampling method. Only 547 reliable questionnaires were selected for statistical analysis. Chi-Square and t-test were used to analyze the data, using SPSS program. We obtained the following results: 1. We found that there was a significant association between segmented age group and the preference of men's jacket style. Specially $20{\sim}34$ aged group had a significant association with styles of formal jacket, casual t-shirts, casual pants, but $35{\sim}49$ aged group had formal pants style. Looking at the general percentage, semi-formal jacket, slim fit t shirt, straight casual pants were the most favored styles. 2. Age has an significant effect on the preferences of formal menswear fabric patterns and shirt patterns. The results of t-test showed that there found to be significant by gender in character and check pattern of shirts. 3. In design details, the number of button had not significance by gender, and 2 buttons was th most favored by both age groups. The number of gather at the waist had an significant association in $34{\sim}49$ age group. $20{\sim}34$ age group prefer high waist of pants, while $35{\sim}49$ age group prefer low waist of pants. 4. For on time outfit, formal wear and tie ensemble was the most favored with significant difference by age and gender. Formal wear and no tie ensemble favored by about one third of respondents, and more favored by the younger group. For off time outfit, casual jacket and casual pants ensemble was the most favored.

Face Recognition based on Hybrid Classifiers with Virtual Samples (가상 데이터와 융합 분류기에 기반한 얼굴인식)

  • 류연식;오세영
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper presents a novel hybrid classifier for face recognition with artificially generated virtual training samples. We utilize both the nearest neighbor approach in feature angle space and a connectionist model to obtain a synergy effect by combining the results of two heterogeneous classifiers. First, a classifier called the nearest feature angle (NFA), based on angular information, finds the most similar feature to the query from a given training set. Second, a classifier has been developed based on the recall of stored frontal projection of the query feature. It uses a frontal recall network (FRN) that finds the most similar frontal one among the stored frontal feature set. For FRN, we used an ensemble neural network consisting of multiple multiplayer perceptrons (MLPs), each of which is trained independently to enhance generalization capability. Further, both classifiers used the virtual training set generated adaptively, according to the spatial distribution of each person's training samples. Finally, the results of the two classifiers are combined to comprise the best matching class, and a corresponding similarit measure is used to make the final decision. The proposed classifier achieved an average classification rate of 96.33% against a large group of different test sets of images, and its average error rate is 61.5% that of the nearest feature line (NFL) method, and achieves a more robust classification performance.

Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models (GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망)

  • Bae, Deg-Hyo;Jung, Il-Won;Lee, Byung-Ju;Lee, Moon-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • The objective of this study is to examine the climate change impact assessment on Korean water resources considering the uncertainties of Global Climate Models (GCMs) and hydrological models. The 3 different emission scenarios (A2, A1B, B1) and 13 GCMs' results are used to consider the uncertainties of the emission scenario and GCM, while PRMS, SWAT, and SLURP models are employed to consider the effects of hydrological model structures and potential evapotranspiration (PET) computation methods. The 312 ensemble results are provided to 109 mid-size sub-basins over South Korean and Gaussian kernel density functions obtained from their ensemble results are suggested with the ensemble mean and their variabilities of the results. It shows that the summer and winter runoffs are expected to be increased and spring runoff to be decreased for the future 3 periods relative to past 30-year reference period. It also provides that annual average runoff increased over all sub-basins, but the increases in the northern basins including Han River basin are greater than those in the southern basins. Due to the reason that the increase in annual average runoff is mainly caused by the increase in summer runoff and consequently the seasonal runoff variations according to climate change would be severe, the climate change impact on Korean water resources could intensify the difficulties to water resources conservation and management. On the other hand, as regards to the uncertainties, the highest and lowest ones are in winter and summer seasons, respectively.

Research on flood risk forecast method using weather ensemble prediction system in urban region (앙상블 기상예측 자료를 활용한 도시지역의 홍수위험도 예측 방안에 관한 연구)

  • Choi, Youngje;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.753-761
    • /
    • 2019
  • Localized heavy storm is one of the major causes of flood damage in urban regions. According to the recent disaster statistics in South Korea, the frequency of urban flood is increasing more frequently, and the scale is also increasing. However, localized heavy storm is difficult to predict, making it difficult for local government officials to deal with floods. This study aims to construct a Flood risk matrix (FRM) using ensemble weather prediction data and to assess its applicability as a means of reducing damage by securing time for such urban flood response. The FRM is a two-dimensional matrix of potential impacts (X-axis) representing flood risk and likelihood (Y-axis) representing the occurrence probability of dangerous weather events. To this end, a regional FRM was constructed using historical flood damage records and probability precipitation data for basic municipality in Busan and Daegu. Applicability of the regional FRMs was assessed by applying the LENS data of the Korea Meteorological Administration on past heavy rain events. As a result, it was analyzed that the flood risk could be predicted up to 3 days ago, and it would be helpful to reduce the damage by securing the flood response time in practice.

Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method (앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.121-133
    • /
    • 2019
  • Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • This paper has proposed an algorithm that detecting for dense small vehicle in large image efficiently. It is consisted of two Ensemble Deep-Learning Network algorithms based on Coarse to Fine method. The system can detect vehicle exactly on selected sub image. In the Coarse step, it can make Voting Space using the result of various Deep-Learning Network individually. To select sub-region, it makes Voting Map by to combine each Voting Space. In the Fine step, the sub-region selected in the Coarse step is transferred to final Deep-Learning Network. The sub-region can be defined by using dynamic windows. In this paper, pre-defined mapping table has used to define dynamic windows for perspective road image. Identity judgment of vehicle moving on each sub-region is determined by closest center point of bottom of the detected vehicle's box information. And it is tracked by vehicle's box information on the continuous images. The proposed algorithm has evaluated for performance of detection and cost in real time using day and night images captured by CCTV on the road.

Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN (U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가)

  • Yu, Jiyun;Yoon, Daeung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.140-161
    • /
    • 2022
  • Seismic data with missing traces are often obtained regularly or irregularly due to environmental and economic constraints in their acquisition. Accordingly, seismic data interpolation is an essential step in seismic data processing. Recently, research activity on machine learning-based seismic data interpolation has been flourishing. In particular, convolutional neural network (CNN) and generative adversarial network (GAN), which are widely used algorithms for super-resolution problem solving in the image processing field, are also used for seismic data interpolation. In this study, CNN-based algorithm, U-Net and GAN-based algorithm, and conditional Wasserstein GAN (cWGAN) were used as seismic data interpolation methods. The results and performances of the methods were evaluated thoroughly to find an optimal interpolation method, which reconstructs with high accuracy missing seismic data. The work process for model training and performance evaluation was divided into two cases (i.e., Cases I and II). In Case I, we trained the model using only the regularly sampled data with 50% missing traces. We evaluated the model performance by applying the trained model to a total of six different test datasets, which consisted of a combination of regular, irregular, and sampling ratios. In Case II, six different models were generated using the training datasets sampled in the same way as the six test datasets. The models were applied to the same test datasets used in Case I to compare the results. We found that cWGAN showed better prediction performance than U-Net with higher PSNR and SSIM. However, cWGAN generated additional noise to the prediction results; thus, an ensemble technique was performed to remove the noise and improve the accuracy. The cWGAN ensemble model removed successfully the noise and showed improved PSNR and SSIM compared with existing individual models.