• Title/Summary/Keyword: ensemble mean

Search Result 202, Processing Time 0.025 seconds

Ordinary Kriging of Daily Mean SST (Sea Surface Temperature) around South Korea and the Analysis of Interpolation Accuracy (정규크리깅을 이용한 우리나라 주변해역 일평균 해수면온도 격자지도화 및 내삽정확도 분석)

  • Ahn, Jihye;Lee, Yangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • SST (Sea Surface Temperature) is based on the atmosphere-ocean interaction, one of the most important mechanisms for the Earth system. Because it is a crucial oceanic and meteorological factor for understanding climate change, gap-free grid data at a specific spatial and temporal resolution is beneficial in SST studies. This paper examined the production of daily SST grid maps from 137 stations in 2020 through the ordinary kriging with variogram optimization and their accuracy assessment. The variogram optimization was achieved by WLS (Weighted Least Squares) method, and the blind tests for the interpolation accuracy assessment were conducted by an objective and spatially unbiased sampling scheme. The four-round blind tests showed a pretty high accuracy: a root mean square error between 0.995 and 1.035℃ and a correlation coefficient between 0.981 and 0.982. In terms of season, the accuracy in summer was a bit lower, presumably because of the abrupt change in SST affected by the typhoon. The accuracy was better in the far seas than in the near seas. West Sea showed better accuracy than East or South Sea. It is because the semi-enclosed sea in the near seas can have different physical characteristics. The seasonal and regional factors should be considered for accuracy improvement in future work, and the improved SST can be a member of the SST ensemble around South Korea.

Changes in Mean Temperature and Warmth Index on the Korean Peninsula under SSP-RCP Climate Change Scenarios (SSP-RCP 기후변화 시나리오 기반 한반도의 평균 기온 및 온량지수 변화)

  • Jina Hur;Yongseok Kim;Sera Jo;Eung-Sup Kim;Mingu Kang;Kyo-Moon Shim;Seung-Gil Hong
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • Using 18 multi-model-based a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) climate change scenarios, future changes in temperature and warmth index on the Korean Peninsula in the 21st century (2011~2100) were analyzed. In the analysis of the current climate (1981~2010), the ensemble averaged model results were found to reproduce the observed average values and spatial patterns of temperature and warmth index similarly well. In the future climate projections, temperature and warmth index are expected to rise in the 21st century compared to the current climate. They go further into the future and the higher carbon scenario (SSP5-8.5), the larger the increase. In the 21st century, in the low-carbon scenario (SSP1-2.6), temperature and warmth index are expected to rise by about 2.5℃ and 24.6%, respectively, compared to the present, while in the high-carbon scenario, they are expected to rise by about 6.2℃ and 63.9%, respectively. It was analyzed that reducing carbon emissions could contribute to reducing the increase in temperature and warmth index. The increase in the warmth index due to climate change can be positively analyzed to indicate that the effective heat required for plant growth on the Korean Peninsula will be stably secured. However, it is necessary to comprehensively consider negative aspects such as changes in growth conditions during the plant growth period, increase in extreme weather such as abnormally high temperatures, and decrease in plant diversity. This study can be used as basic scientific information for adapting to climate change and preparing response measures.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.

Measurement of Turbulence Properties at the Time of Flow Reversal Under High Wave Conditions in Hujeong Beach (후정해변 고파랑 조건하에서 파랑유속 방향전환점에서 발생하는 난류성분의 측정)

  • Chang, Yeon S.;Do, Jong Dae;Kim, Sun-Sin;Ahn, Kyungmo;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.206-216
    • /
    • 2017
  • The temporal distribution of the turbulence kinetic energy (TKE) and the vertical component of Reynolds stresses ($-{\bar{u^{\prime}w^{\prime}}}$) was measured during one wave period under high wave energy conditions. The wave data were obtained at Hujeong Beach in the east coast of Korea at January 14~18 of 2017 when an extratropical cyclone was developed in the East Sea. Among the whole thousands of waves measured during the period, hundreds of regular waves that had with similar pattern were selected for the analysis in order to give three representing mean wave patterns using the ensemble average technique. The turbulence properties were then estimated based on the selected wave data. It is interesting to find out that $-{\bar{u^{\prime}w^{\prime}}}$ has one clear peak near the time of flow reversal while TKE has two peaks at the corresponding times of maximum cross-shore velocity magnitudes. The distinguished pattern of Reynolds stress indicates that vertical fluxes of such properties as suspended sediments may be enhanced at the time when the horizontal flow direction is reversed to disturb the flows, supporting the turbulence convection process proposed by Nielsen (1992). The characteristic patterns of turbulence properties are examined using the CADMAS-SURF Reynolds-Averaged Navier-Stokes (RANS) model. Although the model can reasonably simulate the distribution of TKE pattern, it fails to produce the $-{\bar{u^{\prime}w^{\prime}}}$ peak at the time of flow reversal, which indicates that the application of RANS model is limited in the prediction of some turbulence properties such as Reynolds stresses.

A Correction of East Asian Summer Precipitation Simulated by PNU/CME CGCM Using Multiple Linear Regression (다중 선형 회귀를 이용한 PNU/CME CGCM의 동아시아 여름철 강수예측 보정 연구)

  • Hwang, Yoon-Jeong;Ahn, Joong-Bae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.214-226
    • /
    • 2007
  • Because precipitation is influenced by various atmospheric variables, it is highly nonlinear. Although precipitation predicted by a dynamic model can be corrected by using a nonlinear Artificial Neural Network, this approach has limits such as choices of the initial weight, local minima and the number of neurons, etc. In the present paper, we correct simulated precipitation by using a multiple linear regression (MLR) method, which is simple and widely used. First of all, Ensemble hindcast is conducted by the PNU/CME Coupled General Circulation Model (CGCM) (Park and Ahn, 2004) for the period from April to August in 1979-2005. MLR is applied to precipitation simulated by PNU/CME CGCM for the months of June (lead 2), July (lead 3), August (lead 4) and seasonal mean JJA (from June to August) of the Northeast Asian region including the Korean Peninsula $(110^{\circ}-145^{\circ}E,\;25-55^{\circ}N)$. We build the MLR model using a linear relationship between observed precipitation and the hindcasted results from the PNU/CME CGCM. The predictor variables selected from CGCM are precipitation, 500 hPa vertical velocity, 200 hPa divergence, surface air temperature and others. After performing a leave-oneout cross validation, the results are compared with the PNU/CME CGCM's. The results including Heidke skill scores demonstrate that the MLR corrected results have better forecasts than the direct CGCM result for rainfall.

Development of the Aircraft CO2 Measurement Data Assimilation System to Improve the Estimation of Surface CO2 Fluxes Using an Inverse Modeling System (인버스 모델링을 이용한 지표면 이산화탄소 플럭스 추정 향상을 위한 항공기 관측 이산화탄소 자료동화 체계 개발)

  • Kim, Hyunjung;Kim, Hyun Mee;Cho, Minkwang;Park, Jun;Kim, Dae-Hui
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • In order to monitor greenhouse gases including $CO_2$, various types of surface-, aircraft-, and satellite-based measurement projects have been conducted. These data help understand the variations of greenhouse gases and are used in atmospheric inverse modeling systems to simulate surface fluxes for greenhouse gases. CarbonTracker is a system for estimating surface $CO_2$ flux, using an atmospheric inverse modeling method, based on only surface observation data. Because of the insufficient surface observation data available for accurate estimation of the surface $CO_2$ flux, additional observations would be required. In this study, a system that assimilates aircraft $CO_2$ measurement data in CarbonTracker (CT2013B) is developed, and the estimated results from this data assimilation system are evaluated. The aircraft $CO_2$ measurement data used are obtained from the Comprehensive Observation Network for Trace gases by the Airliner (CONTRAIL) project. The developed system includes the preprocessor of the raw observation data, the observation operator, and the ensemble Kalman filter (EnKF) data assimilation process. After preprocessing the raw data, the modeled value corresponding spatially and temporally to each observation is calculated using the observation operator. These modeled values and observations are then averaged in space and time, and used in the EnKF data assimilation process. The modeled values are much closer to the observations and show smaller biases and root-mean-square errors, after the assimilation of the aircraft $CO_2$ measurement data. This system could also be used to assimilate other aircraft $CO_2$ measurement data in CarbonTracker.

Development of Stochastic Downscaling Method for Rainfall Data Using GCM (GCM Ensemble을 활용한 추계학적 강우자료 상세화 기법 개발)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Lee, Dong-Ryul;Yoon, Sun-Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.825-838
    • /
    • 2014
  • The stationary Markov chain model has been widely used as a daily rainfall simulation model. A main assumption of the stationary Markov model is that statistical characteristics do not change over time and do not have any trends. In other words, the stationary Markov chain model for daily rainfall simulation essentially can not incorporate any changes in mean or variance into the model. Here we develop a Non-stationary hidden Markov chain model (NHMM) based stochastic downscaling scheme for simulating the daily rainfall sequences, using general circulation models (GCMs) as inputs. It has been acknowledged that GCMs perform well with respect to annual and seasonal variation at large spatial scale and they stand as one of the primary sources for obtaining forecasts. The proposed model is applied to daily rainfall series at three stations in Nakdong watershed. The model showed a better performance in reproducing most of the statistics associated with daily and seasonal rainfall. In particular, the proposed model provided a significant improvement in reproducing the extremes. It was confirmed that the proposed model could be used as a downscaling model for the purpose of generating plausible daily rainfall scenarios if elaborate GCM forecasts can used as a predictor. Also, the proposed NHMM model can be applied to climate change studies if GCM based climate change scenarios are used as inputs.

Sound event detection model using self-training based on noisy student model (잡음 학생 모델 기반의 자가 학습을 활용한 음향 사건 검지)

  • Kim, Nam Kyun;Park, Chang-Soo;Kim, Hong Kook;Hur, Jin Ook;Lim, Jeong Eun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.479-487
    • /
    • 2021
  • In this paper, we propose an Sound Event Detection (SED) model using self-training based on a noisy student model. The proposed SED model consists of two stages. In the first stage, a mean-teacher model based on an Residual Convolutional Recurrent Neural Network (RCRNN) is constructed to provide target labels regarding weakly labeled or unlabeled data. In the second stage, a self-training-based noisy student model is constructed by applying different noise types. That is, feature noises, such as time-frequency shift, mixup, SpecAugment, and dropout-based model noise are used here. In addition, a semi-supervised loss function is applied to train the noisy student model, which acts as label noise injection. The performance of the proposed SED model is evaluated on the validation set of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 Challenge Task 4. The experiments show that the single model and ensemble model of the proposed SED based on the noisy student model improve F1-score by 4.6 % and 3.4 % compared to the top-ranked model in DCASE 2020 challenge Task 4, respectively.

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea (PNU CGCM-WRF Chain을 이용한 남한지역 벼의 생육단계별 고온해 및 저온해 발생일수에 대한 예측성 연구)

  • Kim, Young-Hyun;Choi, Myeong-Ju;Shim, Kyo-Moon;Hur, Jina;Jo, Sera;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.577-592
    • /
    • 2021
  • This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.