• Title/Summary/Keyword: ensemble learning models

Search Result 200, Processing Time 0.019 seconds

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Malicious Insider Detection Using Boosting Ensemble Methods (앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법)

  • Park, Suyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

BERT-Based Logits Ensemble Model for Gender Bias and Hate Speech Detection

  • Sanggeon Yun;Seungshik Kang;Hyeokman Kim
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.641-651
    • /
    • 2023
  • Malicious hate speech and gender bias comments are common in online communities, causing social problems in our society. Gender bias and hate speech detection has been investigated. However, it is difficult because there are diverse ways to express them in words. To solve this problem, we attempted to detect malicious comments in a Korean hate speech dataset constructed in 2020. We explored bidirectional encoder representations from transformers (BERT)-based deep learning models utilizing hyperparameter tuning, data sampling, and logits ensembles with a label distribution. We evaluated our model in Kaggle competitions for gender bias, general bias, and hate speech detection. For gender bias detection, an F1-score of 0.7711 was achieved using an ensemble of the Soongsil-BERT and KcELECTRA models. The general bias task included the gender bias task, and the ensemble model achieved the best F1-score of 0.7166.

Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking (배깅 및 스태킹 기반 앙상블 기계학습법을 이용한 고성능 콘크리트 압축강도 예측모델 개발)

  • Yun-Ji Kwak;Chaeyeon Go;Shinyoung Kwag;Seunghyun Eem
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • Predicting the compressive strength of high-performance concrete (HPC) is challenging because of the use of additional cementitious materials; thus, the development of improved predictive models is essential. The purpose of this study was to develop an HPC compressive-strength prediction model using an ensemble machine-learning method of combined bagging and stacking techniques. The result is a new ensemble technique that integrates the existing ensemble methods of bagging and stacking to solve the problems of a single machine-learning model and improve the prediction performance of the model. The nonlinear regression, support vector machine, artificial neural network, and Gaussian process regression approaches were used as single machine-learning methods and bagging and stacking techniques as ensemble machine-learning methods. As a result, the model of the proposed method showed improved accuracy results compared with single machine-learning models, an individual bagging technique model, and a stacking technique model. This was confirmed through a comparison of four representative performance indicators, verifying the effectiveness of the method.

GBGNN: Gradient Boosted Graph Neural Networks

  • Eunjo Jang;Ki Yong Lee
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.501-513
    • /
    • 2024
  • In recent years, graph neural networks (GNNs) have been extensively used to analyze graph data across various domains because of their powerful capabilities in learning complex graph-structured data. However, recent research has focused on improving the performance of a single GNN with only two or three layers. This is because stacking layers deeply causes the over-smoothing problem of GNNs, which degrades the performance of GNNs significantly. On the other hand, ensemble methods combine individual weak models to obtain better generalization performance. Among them, gradient boosting is a powerful supervised learning algorithm that adds new weak models in the direction of reducing the errors of the previously created weak models. After repeating this process, gradient boosting combines the weak models to produce a strong model with better performance. Until now, most studies on GNNs have focused on improving the performance of a single GNN. In contrast, improving the performance of GNNs using multiple GNNs has not been studied much yet. In this paper, we propose gradient boosted graph neural networks (GBGNN) that combine multiple shallow GNNs with gradient boosting. We use shallow GNNs as weak models and create new weak models using the proposed gradient boosting-based loss function. Our empirical evaluations on three real-world datasets demonstrate that GBGNN performs much better than a single GNN. Specifically, in our experiments using graph convolutional network (GCN) and graph attention network (GAT) as weak models on the Cora dataset, GBGNN achieves performance improvements of 12.3%p and 6.1%p in node classification accuracy compared to a single GCN and a single GAT, respectively.

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.37-44
    • /
    • 2021
  • Automatic classification of brain MRI images play an important role in early diagnosis of brain tumors. In this work, we present a deep learning-based brain tumor classification model in MRI images using ensemble of deep features. In our proposed framework, three different deep features from brain MR image are extracted using three different pre-trained models. After that, the extracted deep features are fed to the classification module. In the classification module, the three different deep features are first fed into the fully-connected layers individually to reduce the dimension of the features. After that, the output features from the fully-connected layers are concatenated and fed into the fully-connected layer to predict the final output. To evaluate our proposed model, we use openly accessible brain MRI dataset from web. Experimental results show that our proposed model outperforms other machine learning-based models.

Sparsity Increases Uncertainty Estimation in Deep Ensemble

  • Dorjsembe, Uyanga;Lee, Ju Hong;Choi, Bumghi;Song, Jae Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.373-376
    • /
    • 2021
  • Deep neural networks have achieved almost human-level results in various tasks and have become popular in the broad artificial intelligence domains. Uncertainty estimation is an on-demand task caused by the black-box point estimation behavior of deep learning. The deep ensemble provides increased accuracy and estimated uncertainty; however, linearly increasing the size makes the deep ensemble unfeasible for memory-intensive tasks. To address this problem, we used model pruning and quantization with a deep ensemble and analyzed the effect in the context of uncertainty metrics. We empirically showed that the ensemble members' disagreement increases with pruning, making models sparser by zeroing irrelevant parameters. Increased disagreement implies increased uncertainty, which helps in making more robust predictions. Accordingly, an energy-efficient compressed deep ensemble is appropriate for memory-intensive and uncertainty-aware tasks.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.