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Abstract 

Deep neural networks have achieved almost human-level results in various tasks and have become popular in 

the broad artificial intelligence domains. Uncertainty estimation is an on-demand task caused by the black-box point 

estimation behavior of deep learning. The deep ensemble provides increased accuracy and estimated uncertainty; 

however, linearly increasing the size makes the deep ensemble unfeasible for memory-intensive tasks. To address 

this problem, we used model pruning and quantization with a deep ensemble and analyzed the effect in the context 

of uncertainty metrics. We empirically showed that the ensemble members’ disagreement increases with pruning, 

making models sparser by zeroing irrelevant parameters. Increased disagreement implies increased uncertainty, 

which helps in making more robust predictions. Accordingly, an energy-efficient compressed deep ensemble is 

appropriate for memory-intensive and uncertainty-aware tasks. 

 

1. Introduction 

 Deep neural networks make an overconfident [1], black-

box point estimation because the neural network parameters 

comprise scalar matrices. Even in unseen data that come from 

another distribution, a neural network incorrectly predicts with 

high confidence.  In deep learning, we require a scalable and 

straightforward uncertainty estimation method. Monte Carlo 

(MC) dropout uses a standard regularization technique 

dropout [2] with a Bernoulli mask in inference time by 

sampling to measure model uncertainty [3].  

 Ensemble [4] is a well-known method for improving the 

accuracy of machine learning tasks. Another sample-based 

uncertainty measuring method is the deep ensemble [5], which 

consists of randomly initialized, independently trained, and 

shared-architecture neural networks. The results showed 

excellent uncertainty estimation while increasing the accuracy 

[6]. Randomly initialized networks are close to each other in 

initialization, but they move further away in the function space 

during training. It is assumed that such function space 

diversity is the main reason for the excellent performance of 

the deep ensemble [7].  

 However, cost remains the main challenge for the deep 

ensemble as the training, test time and ensemble size linearly 

increase in parallel with the increase in ensemble members. 

The deep ensemble is not applicable in memory-intensive 

tasks because of its increased size.  

 In deep learning, model compression techniques [8] 

dramatically reduce the model size compared with relatively 

insignificant to no accuracy degradation. Model pruning 

increases the model sparsity by zeroing the irrelevant 

parameters. Low-rank factorization decomposes the matrix 

tensor by estimating the informative parameters. Knowledge 

distillation learns a distilled model and trains a more compact 

network to reproduce a more extensive or ensemble network. 

Model quantization converts the parameter floating-point into 

8 bits or less.  

2. Related Work 

 To the best of our knowledge, the majority of the studies 

aim to increase uncertainty quantification while decreasing the 

cost by leveraging knowledge distillation [9-12]. We assume 

that using the deep ensemble with knowledge distillation 

might lose the multimodality, which is the main advantage of 

its successful results. Correspondingly, because the baseline 

approach is a relatively simple and scalable method without 

any change in the model architecture, the compression method 

should also be as simple and scalable as the deep ensemble.  

 We already know that model pruning [13–17] has a trade-

off between accuracy and size. This study analyzes the 

tradeoffs between the size, accuracy, and uncertainty 

estimation using a simple strategy comprising pruning and 

quantization with a deep ensemble (called a compressed deep 

ensemble).  

 Pruning sacrifices the long tail part of the training dataset. 

It is a tricky part of the dataset to be predicted by both humans 

and models because of noise-contaminated, multiple, or 

wrongly labeled objects [17]. If pruning identifies such 

instances, it is a favorable feature from an uncertainty 

perspective. Moreover, sparse initialization helps achieve 

greater diversity among initialization time units [18]. Thus, we 

believe that model pruning increases a non-zero parameter 

weight, and such an increased weight could positively affect 

the function space diversity.  
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3. Proposed Method 

3.1 Problem Setup and High-Level Summary 

 We assume that the training dataset comprises of N data 

points {x, y}, where x ∈ Rd represents d-dimensional features. 

For classification problems, the label y ∈ {1, …, K} is assumed 

to be one of the K classes. We used a neural network to assign 

the prediction probability pθ (y| x) over the labels, where θ 

denotes the neural network's parameters. In this study, we 

created an ensemble that comprises M number of independent 

neural networks. 

3.2 Deep Ensemble 

 The deep ensemble consists of three simple recipes to 

measure the uncertainty. Selecting a proper score rule as a 

training criterion is the first recipe. Independent, randomly 

initialized, shared architecture is the second recipe. They 

introduced adversarial training to smooth the predictive 

distributions, but it was not as effective as the abovementioned 

two recipes.  

 Popular loss functions meet the condition for the proper 

scoring rule; negative log-likelihood (NLL) for both 

regression and classification, root mean square error (RMSE) 

for regression, and Brier score for classification are all 

examples of proper scoring rules. Because a base learner 

trained on a bootstrap sample sees only 63% unique data 

points, instead of using the bootstrap, the entire dataset is 

favorable [19], even though the deep ensemble was 

theoretically motivated by the bootstrap. Ovadia et al. [6], 

[20–23] demonstrated that a deep ensemble consistently 

provides more reliable and practically useful uncertainty 

estimates. In the deep ensemble, all members are treated as a 

uniformly weighted mixture model, and the final prediction is 

the average of the predictions. 

3.3 Model Pruning and Quantization 

 Model pruning decreases the model size by increasing the 

sparsity of the parameters by removing irrelevant parameters. 

In conventional pruning, the trained model is iteratively 

pruned until it attains the desired sparsity, and after pruning, 

the model with pruned parameters is re-trained. The neural 

network model has a function f (x; W), then pruned model has 

a function f (x; W ⨀ M), where M ∈ {0, 1} is a pruning mask 

to remove the parameter. Practically, the pruned parameters of 

W are set to zero or entirely removed. Using zero weights, 

element-wise multiplication is redundant. As a result, the 

computational footprint also decreases. Blalock et al. [15] 

empirically showed that a large, sparse model performs better 

than a small dense model. Model quantization is a model 

compression technique that converts the parameter 

representation from floating-point 32 bits to 8 bits or fewer. 

Quantization is complementary to pruning techniques and is 

harmless for accuracy. Thus, we pruned and quantized the 

deep ensemble to decrease the linearly increasing size. 

3.4 Evaluation Metrics 

 We evaluated the standard deep ensemble as a baseline 

model and estimated accuracy, NLL, Brier score, zipped 

model size as a memory footprint, and compression ratio in 

the in-distribution data.  

 There is no ground truth in the out-of-distribution data; 

thus, we cannot measure the accuracy in these data. 

Furthermore, there was no standard uncertainty metric. Hence, 

we evaluated entropy, disagreement, and the confidence curve 

proposed in [6] as uncertainty metrics. As proposed in [5], 

ensemble disagreement counts the Kullback–Leibler 

divergence between the member network prediction and the 

mean prediction.  

4. Experimental Setup 

 We first trained the deep ensemble using the MNIST [24] 

handwritten digits dataset. The hyperparameters and model 

summary are listed in Table 1. Subsequently, we applied a 

magnitude-based iterative pruning and 8-bit quantization for 

each member of deep ensembles using various sparsity levels: 

25%, 50%, 75%, and 95% using the TensorFlow [25] Model 

Optimization Toolkit. We used 10,000 test samples from the 

MNIST dataset and 18,724 test samples from the NotMNIST 

[26] alphabet dataset as out-of-distribution data to evaluate the 

uncertainty. 

<Table 1> Model summary and hyperparameters 

5. Experimental Results 

 Table 2 presents the results of the evaluation of the MNIST 

dataset. Accuracy was increased by 0.04%, and the entire 

ensemble size decreased by 4× by pruning with 25% sparsity 

and quantization. However, pruning with 50–75% sparsity and 

quantization slightly reduces the accuracy by 0.01% and 

0.05%, while decreasing the ensemble size by 5× and 8×. 

Pruning with 95% sparsity degrades accuracy by ~1%. 

 Figure 1 presents the confidence curves of the in-

distribution and out-of-distribution data. Confidence in the 

MNIST (Figure 1(a)) is higher than that of NotMNIST (Figure 

1(b)), and if the confidence threshold τ=90%, the ensemble 

classifies more than 90% of the MNIST samples, but only 16–

32% of the NotMNIST samples. An increase in sparsity was 

associated with a decrease in confidence in both test datasets. 

 The evaluation results of the out-of-distribution data are 

presented in Figure 2. All uncertainty metrics increased as 

sparsity increased; thus, pruning and quantization made the 

Convolution layer 1 parameters 280 (26, 26, 28) 

Convolution layer 2 parameters 22432 (9, 9, 32) 

Fully connected layer parameters 5130 (512) 

Training, re-training epochs 20, 5 

Optimizer Adam 

Validation split 0.1 

Ensemble size M 5 

- 374 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)



 

 

 

 

<Table 2> Evaluation results of the MNIST dataset  

deep ensemble more robust in unseen data, especially in 

test data that comes from another distribution. The predictive 

distribution moves to a uniform distribution as uncertainty 

increases, meaning that the model randomly guesses.  

  Baseline evaluation metrics did not change 

significantly with respect to the deep ensemble for pruning 

and quantization. The size of the deep ensemble decreased by 

a magnitude, and 50% of the parameters pruned and quantized 

deep ensemble were almost the same size as a single model.  

 

However, the ensemble’s generalization error is lower than 

that of a single neural network, and it generalizes well in 

unseen data. 

6. Discussion 

 We empirically showed that applying pruning and 

quantization into the deep ensemble decreased the ensemble 

size and increased the uncertainty metrics while showing a 

slight accuracy loss depending on the sparsity level. Pruning 

with 25–75% sparsity and quantization successfully addresses 

the problem associated with the linear increase in the size of 

the deep ensemble and shows solid performance. However, 

pruning with 95% sparsity noticeably degrades the accuracy.  

 There is a tradeoff between insignificant accuracy 

degradation, uncertainty, and memory footprint metric 

improvements. The pruned and quantized deep ensemble 

makes a less confident prediction and generalizes well by 

increasing the uncertainty metrics. Thus, pruning and 

quantization require a deep ensemble applicable to memory-

intensive tasks in Internet-of-Things or mobile devices, while 

increased uncertainty metrics make the deep ensemble more 

robust in distribution shift.  

 Pruning after initialization should be studied further by 

applying the proposed strategy to real-world tasks. Moreover, 

creating a diverse deep ensemble by applying pruning with a 

pre-trained single model could be another possible research 

direction.  
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