• Title/Summary/Keyword: enhanced plant growth

Search Result 509, Processing Time 0.03 seconds

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF

Flurprimidol, Paclobutrazol, and Trinexapac-ethyl Increased Lateral Development of 'Zenith' Zoysiagrass in a Shade Environment (그늘조건에서 Flurprimidol, paclobutrazol, and trinexapac-ethyl이 한국잔디 'Zenith'의 수평생장 증가에 미치는 영향)

  • Ryu, Ju-Hyun;Kim, Ki-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.149-155
    • /
    • 2010
  • This study was conducted to examine the effects of plant growth regulators (PGRs) on the lateral stem growth, and the change of total nonstructural carbohydrate (TNC) status of 'Zenith' zoysiagrass under shaded conditions. Well-established turf was subjected to a full sun, 47%, and 77% shade in a field study. Three different rates of flurprimidol (FP: 0.2, 0.4, and $0.8\;kg{\cdot}ha^{-1}$), paclobutrazol (PB: 0.16, 0.32, and $0.64\;kg{\cdot}ha^{-1}$), and trinexapac-ethyl (TE: 0.04, 0.08, and $0.16\;kg{\cdot}ha^{-1}$) were applied. Lateral development of 'Zenith' zoysiagrass decreased with increasing shade levels. However, compared with control plots, total stolon length and stolon number increased two fold at 0.2, $0.4\;kg{\cdot}ha^{-1}$ FP, and $0.16\;kg{\cdot}ha^{-1}$ PB under full sun. Under 77% shading, stolon number increased by 170% and total stolon length increased by 140% at $0.8\;kg{\cdot}ha^{-1}$ FP. Tiller number increased by 40% at $0.08\;kg{\cdot}ha^{-1}$ TE under full sun, and by 72% at $0.16\;kg{\cdot}ha^{-1}$ TE under 77% shading. The TNC contents of turfgrass treated with $0.8\;kg{\cdot}ha^{-1}$ FP and $0.16\;kg{\cdot}ha^{-1}$ TE increased by 50% as compared with control. Remarkably, nonstructural carbohydrates (NC) partitioning was enhanced by PGRs from leaf tissue to lateral stem tissue, which increased lateral development and may have contributed to recuperative rate. These results suggested that treatments of proper rate of PGRs could enhance the recuperative rate of 'Zenith' zoysiagrass by increasing lateral stem growth especially in shaded conditions.

Genistein from Vigna angularis Extends Lifespan in Caenorhabditis elegans

  • Lee, Eun Byeol;Ahn, Dalrae;Kim, Ban Ji;Lee, So Yeon;Seo, Hyun Won;Cha, Youn-Soo;Jeon, Hoon;Eun, Jae Soon;Cha, Dong Seok;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2015
  • The seed of Vigna angularis has long been cultivated as a food or a folk medicine in East Asia. Genistein (4',5,7-trihydroxyisoflavone), a dietary phytoestrogen present in this plant, has been known to possess various biological properties. In this study, we investigated the possible lifespan-extending effects of genistein using Caenorhabditis elegans model system. We found that the lifespan of nematode was significantly prolonged in the presence of genistein under normal culture condition. In addition, genistein elevated the survival rate of nematode against stressful environment including heat and oxidative conditions. Further studies demonstrated that genistein-mediated increased stress tolerance of nematode could be attributed to enhanced expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). Moreover, we failed to find genistein-induced significant change in aging-related factors including reproduction, food intake, and growth, indicating genistein exerts longevity activity independent of affecting these factors. Genistein treatment also led to an up-regulation of locomotory ability of aged nematode, suggesting genistein affects healthspan as well as lifespan of nematode. Our results represent that genistein has beneficial effects on the lifespan of C. elegans under both of normal and stress condition via elevating expressions of stress resistance proteins.

Molecular Analysis of Archaea, Bacteria and Eucarya Communities in the Rumen - Review-

  • White, B.A.;Cann, I.K.O.;Kocherginskaya, S.A.;Aminov, R.I.;Thill, L.A.;Mackie, R.I.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.129-138
    • /
    • 1999
  • If rumen bacteria can be manipulated to utilize nutrients (i.e., ammonia and plant cell wall carbohydrates) more completely and efficiently, the need for protein supplementation can be reduced or eliminated and the digestion of fiber in forage or agricultural residue-based diets could be enhanced. However, these approaches require a complete and accurate description of the rumen community, as well as methods for the rapid and accurate detection of microbial density, diversity, phylogeny, and gene expression. Molecular ecology techniques based on small subunit (SSU) rRNA sequences, nucleic acid probes and the polymerase chain reaction (PCR) can potentially provide a complete description of the microbial ecology of the rumen of ruminant animals. The development of these molecular tools will result in greater insights into community structure and activity of gut microbial ecosystems in relation to functional interactions between different bacteria, spatial and temporal relationships between different microorganisms and between microorganisms and reed panicles. Molecular approaches based on SSU rRNA serve to evaluate the presence of specific sequences in the community and provide a link between knowledge obtained from pure cultures and the microbial populations they represent in the rumen. The successful development and application of these methods promises to provide opportunities to link distribution and identity of gastrointestinal microbes in their natural environment with their genetic potential and in situ activities. The use of approaches for assessing pupulation dynamics as well as for assessing community functionality will result in an increased understanding and a complete description of the gastrointestinal communities of production animals fed under different dietary regimes, and lead to new strategies for improving animal growth.

Effect of Elicitors on the Production of Valepotriates and Valerenic Acid in the Adventitious Roots of Valeriana fauriei var. dasycarpa Hara (쥐오줌풀 부정근으로부터 valepotriates와 valerenic acid 생산에 미치는 elicitor의 효과)

  • Jin, Hong-Shi;Jin, Mei-Lan;Lee, Mei-Yang;Park, Hyoung-Jae;Nam, Jong-Hyun;Hwang, Baik;Hwang, Sung-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.4
    • /
    • pp.241-245
    • /
    • 2007
  • Effects of various concentrations of elicitors for enhancement in valepotriates and valerenic acids production in adventitious root culture of Valeriana fauriei were investigated. Although the growth of adventitious roots was suppresed by addition of biotic or abiotic elicitors, the production of valepotriates and valerenic acids was enhanced. Addition of $100\;{\mu}M$ methyl jasmonate or 1 $g/{\ell}$ yeast extract to the root culture of V. fauriei resulted in the optimal production of valepotriates ($12.56\;{\pm}\;0.78\;mg/{\ell}$) and valerenic acids ($10.63\;{\pm}\;1.1\;mg/{\ell}$), respectively.

QTL mapping of low-temperature germinability and identification of qLTG1 candidate genes in rice

  • Kim, Sun Ha;Shim, Kyu-Chan;Lee, Hyun-Sook;Le, Anh Quynh;Ahn, Sang-Nag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.116-116
    • /
    • 2017
  • Low-temperature is one of the environmental stress factors that affect plant growth and development and consequently limit crop productivity. The control of seed germination under low-temperature is organized by many genes which are called quantitative trait loci (QTLs). High germination rate for low-temperature is an important factor of growing rice. Previously, we identified a major QTL controlling low-temperature germinability in rice using 96 introgression lines (ILs) derived from a cross between Oryza rufipogon (Rufi) and the Korean japonica cultivar, 'Hwaseongbyeo (HS)'. A $BC_3F_7$ line (TR5) showed better low-temperature germinability than its recurrent parent. TR5 was crossed with HS to develop a segregating F2:3 populations for the target QTL. Six SSR markers polymorphic between HS and Rufi were used to screen and fine map the qLTG1. The qLTG1 on chromosome 1, which accounted for 55.5% of the total phenotypic variation, confirmed that Rufi allele enhanced the low-temperature germinability. Intervals between markers CRM16 and CRM15, four candidate genes were identified. The identified candidate genes, which are encoded by a protein of unknown function, showed their direct involvement on seed germination at low-temperature. To identify genes targeted by qLTG1, we investigated the expression profiles of these candidate genes and germination behavior of qLTG1 under different stress conditions and compared to HS, Rufi, and TR5 at $13{\pm}2^{\circ}C$ for 3 days after incubation. Furthermore, transgenic rice plants will also be developed to conduct a detailed investigation on low-temperature germinability. Hence, the QTL for low-temperature germinability would be useful in rice breeding programs especially in the development of lines possessing low-temperature germinability.

  • PDF

Agricultural Application of Ground Remote Sensing (지상 원격탐사의 농업적 활용)

  • Hong, Soon-Dal;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.92-103
    • /
    • 2003
  • Research and technological advances in the field of remote sensing have greatly enhanced the ability to detect and quantify physical and biological stresses that affect the productivity of agricultural crops. Reflectance in specific visible and near-infrared regions of the electromagnetic spectrum have proved useful in detection of nutrient deficiencies. Especially crop canopy sensors as a ground remote sensing measure the amount of light reflected from nearby surfaces such as leaf tissue or soil and is in contrast to aircraft or satellite platforms that generate photographs or various types of digital images. Multi-spectral vegetation indices derived from crop canopy reflectance in relatively wide wave band can be used to monitor the growth response of plants in relation to environmental factors. The normalized difference vegetation index (NDVI), where NDVI = (NIR-Red)/(NIR+Red), was originally proposed as a means of estimating green biomass. The basis of this relationship is the strong absorption (low reflectance) of red light by chlorophyll and low absorption (high reflectance and transmittance) in the near infrared (NIR) by green leaves. Thereafter many researchers have proposed the other indices for assessing crop vegetation due to confounding soil background effects in the measurement. The green normalized difference vegetation index (GNDVI), where the green band is substituted for the red band in the NDVI equation, was proved to be more useful for assessing canopy variation in green crop biomass related to nitrogen fertility in soils. Consequently ground remote sensing as a non destructive real-time assessment of nitrogen status in plant was thought to be useful tool for site specific crop nitrogen management providing both spatial and temporal information.

Resistance Induction and Enhanced Tuber Production by Pre-inoculation with Bacterial Strains in Potato Plants against Phytophthora infestans

  • Kim, Hyo-Jeong;Jeun, Yong-Chull
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2006
  • Efficacy of resistance induction by the bacterial isolates Pseudomonas putida (TRL2-3), Micrococcus luteus (TRK2-2) and Flexibacteraceae bacterium (MRL412), which were isolated from the rhizosphere of plants growing in Jeju Mountain, were tested in a greenhouse. The disease severity caused by Phytophthora infestans was effectively reduced in the potato plants pre-inoculated with bacterial isolates compared with those of the untreated control plants growing in a greenhouse. In order to estimate the level of protection by the bacterial isolates, Mancozeb WP (Diesen $M^{(R)}$, Kyong nong) and DL-3-amino butyric acid (BABA) were pre-treated, whereas Dimethomorph WP ($Forum^{(R)}$, Kyong nong) and phosphonic acid ($H_{3}PO_{3}$) were post-treated the challenge inoculation with the pathogen. Disease severities of chemical pre-treated as well as post-treated plants were reduced compare to those of the untreated. The disease reduction in the plants pre-treated with Mancozeb WP was the highest, whereas that of post-treated with Dimethomorph WP was the lowest. The yields of plants pre-inoculated with three bacterial isolates were greatly increased than those of control plants. These results suggest that biological control by bacterial isolates might be an alternative strategy against late blight disease in potato plants growing in greenhouse.

Enhancing yield and nutritive value of forage through corn soybean intercropping strategy at seventeen different places in Republic of Korea

  • Song, Yowook;Kim, Dong Woo;Kim, Jeongtae;Fiaz, Muhamad;Kwon, Chan Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • Corn is basal forage for livestock species in Republic of Korea but it lacks protein and needs nitrogenous fertilizer. This study was designed with main objective to achieve optimum growth, yield & nutritive value of forage for livestock through implementing corn-soybean intercropping strategy at 17 different places under Korean condition. Two treatments; corn as monocrop (control treatment) and corn-soybean intercrop were compared under Randomized Block Design from $28^{th}$ May to $8^{th}$ October, 2015. Each treatment had three replicates in each block, whereas seventeen different places were considered as blocks. Data were analyzed through SAS-9.1.3 software. Difference between two treatment means was tested through T-test. Findings depicted that intercropping pattern could not influence (P>0.05) corn plant & ear height, corn lodged stalk No. and corn stalks number. However, corn-soybean intercropping enhanced (P<0.05) forage productivity in terms of total fresh yield ($16.4{\pm}0.7^b$ vs. $19.9{\pm}0.7^atons\;ha^{-1}$), total dry matter yield ($5.38{\pm}0.25^b$ vs. $6.41{\pm}0.31^atons\;ha^{-1}$) and total digestible nutrients yield ($3.94{\pm}0.17^b$ vs. $4.59{\pm}0.21^atons\;ha^{-1}$). Dry matter percentage in corn stalks and corn ears was not different (P>0.05) between two treatments. It was concluded that corn-soybean intercropping strategy was promising technique in enhancing forage productivity though positive symbiotic relation between two crops.

Improved Resistance to Oxidative Stress by a Loss-of-Function Mutation in the Arabidopsis UGT71C1 Gene

  • Lim, Chae Eun;Choi, Jung Nam;Kim, In A;Lee, Shin Ae;Hwang, Yong-Sic;Lee, Choong Hwan;Lim, Jun
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.368-375
    • /
    • 2008
  • Approximately 120 UDP-glycosyltransferases (UGTs), which are classified into 14 distinct groups (A to N), have been annotated in the Arabidopsis genome. UGTs catalyze the transfer of sugars to various acceptor molecules including flavonoids. Previously, UGT71C1 was shown to glycosylate the 3-OH of hydroxycinnamates and flavonoids in vitro. Such secondary metabolites are known to play important roles in plant growth and development. To help define the role of UGT71C1 in planta, we investigated its expression patterns, and isolated and characterized a loss-of-function mutation in the UGT71C1 gene (named ugt71c1-1). Our analyses by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), microarray data mining, and histochemical detection of GUS activity driven by the UGT71C1 promoter region, revealed the tissue-specific expression patterns of UGT71C1 with highest expression in roots. Interestingly, upon treatment with methyl viologen (MV, paraquat), ugt71c1-1 plants displayed enhanced resistance to oxidative stress, and ROS scavenging activity was higher than normal. Metabolite profiling revealed that the levels of two major glycosides of quercetin and kaempferol were reduced in ugt71c1-1 plants. In addition, when exposed to MV-induced oxidative stress, eight representative ROS response genes were expressed at lower levels in ugt71c1-1 plants, indicating that ugt71c1-1 probably has higher non-enzymatic antioxidant activity. Taken together, our results indicate that ugt71c1-1 has increased resistance to oxidative stress, suggesting that UGT71C1 plays a role in some glycosylation pathways affecting secondary metabolites such as flavonoids in response to oxidative stress.