• Title/Summary/Keyword: enhanced dynamic wedge

Search Result 17, Processing Time 0.026 seconds

Dose Evaluation at The Build Up Region Using by Wedge Filter (쐐기필터 사용에 따른 선량증가 영역에서 선량평가)

  • Kim, Yon-Lae;Moon, Seong-Kong;Suh, Tae-Suk;Chung, Jin-Beom;Kim, Jin-Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.341-348
    • /
    • 2014
  • Wedge filter could use to increase the dose distribution at the hot dose regions. We evaluated dose discrepancy at surface and build region in the infield and outfield that Metal Wedge (MW) and Enhance Dynamic Wedge (EDW) were interact with photon. In this paper, we used Gafchromic EBT3 film that had excellent spatial resolution, composed the water equivalent materials and changed the optical density without development. The set up conditions of linear accelerator were fixed 6 MV photon, 100 cm SSD, $10{\times}10cm^2$ field size and were irradiated 400 cGy at Dmax. The dose distribution and absorbed dose were evaluated when we compared the open field with $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ metal wedge and enhanced dynamic wedge. A $15^{\circ}$ metal wedge could increase the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. A $30^{\circ}$ metal wedge could decrease the surface and build up region dose than using a $30^{\circ}$ enhanced dynamic wedge. A $45^{\circ}$ metal wedge could decrease by large deviation the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. The dose of penumbra region at outfield were increased on the thick side but were decreased on the thin side. It could be decrease the surface dose and build up region dose, if the metal wedge filters were properly used to make a good dose distribution and not closed the distance of surface.

Quality Assurance of Operation of Enhanced Dynamic Wedges in Linac (선형가속기의 동적쐐기(EDW) 작동에 대한 품질보증)

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Kang, Jeong-Ku;Son, Kwang-Jae;Lee, Jeong-Ok
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.133-141
    • /
    • 2010
  • The evaluation of Varian enhanced dynamic wedges (EDW) were performed in terms of quality assurance in external radiotherapy. The seven (10, 15, 20, 25, 30, 45, 60 deg.) EDW angles were evaluated for 6 and 15 MV x-rays in Varian Linac. The STT (segmented treatment table) for a field were calculated and compared with actual movement of the jaw using Dynalog files in order to evaluate mechanical operation. Two dimensional array detector and an ionization chamber were used to measure dose distributions in phantom from Linac. The mechanical movement of jaw was agreed with its expectation and two dimensional dose distributions including beam profiles were in agreement with RTP data approximately. In comparison with RTP calculations the percentage difference of output dose values for 100 MU irradiation was less than 2.9% and measured wedge factor was less than 2.6%. These results are shown that there is no problem in clinical applications of EDW equipped on this linac.

Simplistic QA for an Enhanced Dynamic Wedge using the Reversed Wedge Pair Method (역방향 조사방식을 통한 동적쐐기의 품질관리)

  • Lee Jeong Woo;Hong Semie;Suh Tae Suk
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.161-166
    • /
    • 2004
  • A simplistic quality assurance (QA) method was designed for a Linac built-in enhanced dynamic wedge (EDW), which can be utilized to make wedged beam distributions. For the purpose of implementing the EDW symmetry QA, a film dosimetry system, low speedy dosimetry film, film densitometer and 3D RTP system were used, and the films irradiated by means of a 60$^{\circ}$ Reversed wedge pair (REWP) method. The profiles were then analyzed in terms of their symmetries, including partial treatment, which is the case of stopping it abruptly during EDW irradiation, and the measured and calculated values compared using the Cad Plan Golden Segmented Treatment Table (Golden STT). The result of this experiment was in good agreement, within 1 %, of the 'reversed wedge pair counterbalance effect'. For the QA of the effective wedge factor (EWF), the authors measured EWFs in relation to the 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, 25$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$ EDW, which were compared with the calculated values using the correction factor derived from the Golden STT and the log files produced automatically during the process of EDW irradiation. By means of this method it was capable of check up the safety of effective wedge factor without any other dosimetry system. The EDW QA was able to be completed within 1 hour from irradiation to analysis as a consequence of the simplified QA procedure, with maximized effectiveness. Unlike the metal wedge system, the EDW system was heavily dependent on the dose rates and jaw movements; therefore, its features could potentially cause inaccuracy. The frequent simplistic QA for the EDW is essential, and could secure against the flaw of dynamic treatment that uses the EDW.

  • PDF

Evaluation of the dose distribution in Mapcheck using Enhanced Dynamic Wedge (Enhanced Dynamic Wedge를 사용한 Mapcheck에서의 선량분포 평가)

  • Kang, Su-Man;Jang, Eun-Sun;Lee, Byung-Koo;Jung, Bong-Jae;Shin, Jung-Sub;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.343-349
    • /
    • 2012
  • Intensity Modulated Radiotherapy (IMRT) is increasing its use recently due to its benefits of minimizing the dose on surrounding normal organs and being able to target a high dose specifically to the tumor. The study aims to measure and evaluate the dose distribution according to its dynamic changes in Mapcheck. In order to verify the dose distribution by EDW angle($10^{\circ}$,$15^{\circ}$,$20^{\circ}$,$25^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$), field size (asymmetric field) and depth changes (1.5 cm, 5.0 cm) using IMRT in Clinac ix, a solid phantom was placed on the Mapcheck and 100MU was exposed by 6 MV, 10MV X-ray. Using a 6MV, 10MV energy, the percentage depth dose according to a dynamic changes at a maximum dose depth (1.5 cm) and at 5.0 cm depth showed the value difference of maximum 0.6%, less than 1%, which was calculated by a treatment program device considering the maximum dose depth at the center as 100%, the percentage depth dose was in the range between 2.4% and 7.2%. Also, the maximum value difference of a percentage depth dose was 4.1% in Y2-OUT direction, and 1.7% in Y1-IN direction. When treating a patient using a wedge, it is considered that using an enhanced dynamic wedge is effective to reduce the scattered dose which induces unnecessary dose to the surroundings. In particular, when treating a patient at clinic, a treatment must be performed considering that the wedge dose in a toe direction is higher than the dose in a heel direction.

The Study on Properties and Application of Enhanced Dynamic Wedge Factor (향상된 동적쐐기인자(Enhanced Dynamic Wedge Factor)의 특성 및 적용에 관한 고찰)

  • Kim, Dae-Sup;Ban, Tae-Joon;Yeom, Mi-Suk;Yoo, Soon-Mi;Lee, Woo-Seok;Back, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • Purpose: We try to calculate EDW-factor easily with the formula applies essential data of EDW-factor and evaluate the validity through a measurement. Materials and Methods: We used the given value of GSTT (Golden Segmented Treatment Table) for the calculation of the EDW-factor. As to the experimental device, 0.6 cc farmer-type ion-chamber, an electrometer and water- phantom were used. A measurement was made at the maximum dose depth of the photon beam energy 6 MV and 15 MV under the condition that SSD (Source to Surface Distance) was 100 cm. The angle of the EDW (Enhanced Dynamic Wedge) which we use in an experiment was 60 degree, 30 degree, 20 degree in the Y1-OUT direction. We used Eclipse planning system (Varian, USA) as RTP system and the EDW-factor was calculated about all fields and EDW direction. In order to show the EDW-factor feature, a measurement was made at the selected field that verify the influence of the dependability about X, Y jaw and off-axis field. Results: When we change the Y1 field, it influence on the EDW-Factor and measured value. But the error between measured values and calculated values was less than 1%. The experimental result indicated the tendency that the error of the result of calculation and measured value becomes smaller as the EDW angle become smaller whether the calculation point (measurement point) and iso-center are same or not. The influence of the field size and energy did not show up. We simulated with the same condition using the RTP system. And we found that it makes no difference between the MU which is calculated manually by applying the EDW-Factor obtained from the commercial program and the value which is calculated by using RTP system. Conclusion: We excluded fitting value from well-known EDW-Factor formula and calculated EDW-factor with the formula applies essential data of EDW-factor only. As a result, there are no significant difference between the measured value and calculated value and it showed errors less than 1%. Also, we implemented the commercial program to calculate EDW-Factor conveniently without measure a factor on each field.

  • PDF

Evaluation of Scattered Dose to the Contralateral Breast by Separating Effect of Medial Tangential Field and Lateral Tangential Field: A Comparison of Common Primary Breast Irradiation Techniques (유방암 접선조사 치료 방법에 대한 반대쪽 유방에서의 산란선량 평가)

  • Ban, Tae-Joon;Jeon, Soo-Dong;Kwak, Jung-Won;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2012
  • Purpose: The concern of improving the quality of life and reducing side effects related to cancer treatment has been a subject of interest in recent years with advances in cancer treatment techniques and increasing survival time. This study is an analysis of differing scattered dose to the contralateral breast using common different treatment techniques. Materials and Methods: Eclipse 10.0 (Varian, USA) based $30^{\circ}$ EDW (Enhanced dynamic wedge) plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FiF (field in field) plan were established using CT image of breast phantom which in our hospital. Each treatment plan were designed to exposure 400 cGy using CL-6EX (VARIAN, USA) and we measured scattered dose at 1 cm, 3 cm, 5 cm, 9 cm away from medial side of the phantom at 1 cm depth using ionization chamber (FC 65G, IBA). We carried out measurement by separating effect of medial tangential field and lateral tangential field and analyze. Results: The evaluation of scattered dose to contralateral breast, $30^{\circ}$ EDW plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FIF plan showed 6.55%, 4.72%, 2.79%, 2.33%, 1.87% about prescription dose of each treatment plan. The result of scattered dose measurement by separating effect of medial tangential field and lateral tangential field results were 4.94%, 3.33%, 1.55%, 1.17%, 0.77% about prescription dose at medial tangential field and 1.61%, 1.40%, 1.24%, 1.16%, 1.10% at lateral tangential field along with measured distance. Conclusion: In our experiment, FiF treatment technique generates minimum of scattered dose to contralateral breast which come from mainly phantom scatter factor. Whereas $30^{\circ}$ wedge plan generates maximum of scattered doses to contralateral breast and 3.3% of them was scattered from gantry head. The description of treatment planning system showed a loss of precision for a relatively low scatter dose region. Scattered dose out of Treatment radiation field is relatively lower than prescription dose but, in decision of radiation therapy, it cannot be ignored that doses to contralateral breast are related with probability of secondary cancer.

  • PDF

Dose Distribution According to the Tissue Composition Using Wedge Filter by Radiochromic Film (쐐기필터 사용 시 레디오크로믹 필름을 이용한 조직에 따른 선량분포 연구)

  • Kim, Yon-Lae;Lee, Jeong-Woo;Park, Byung-Moon;Jung, Jae-Yong;Park, Ji-Yeon;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The purpose of this study is to analyze the dose distribution when wedge filter is used in the various tissue electron density materials. The dose distribution was assessed that the enhanced dynamic wedge filter and physical wedge filter were used in the solid water phantom, cork phantom, and air cavity. The film dosimetry was suitable simple to measure 2D dose distribution. Therefore, the radiochromic films (Gafchromic EBT2, ISP, NJ, USA) were selected to measure and to analyze the dose distributions. A linear accelerator using 6 MV photon were irradiated to field size of $10{\times}10cm^2$ with 400 MUs. The dose distributions of EBT2 films were analyzed the in-field area and penumbra regions by using dose analysis program. In the dose distributions of wedge field, the dose from a physical wedge was higher than that from a dynamic wedge at the same electron density materials. A dose distributions of wedge type in the solid water phantom and the cork phantom were in agreements with 2%. However, the dose distribution in air cavity showed the large difference with those in the solid water phantom or cork phantom dose distributions. Dose distribution of wedge field in air cavity was not shown the wedge effect. The penumbra width, out of the field of thick and thin, was observed larger from 1 cm to 2 cm at the thick end. The penumbra of physical wedge filter was much larger average 6% than the dynamic wedge filter. If the physical wedge filter is used, the dose was increased to effect the scatter that interacted with photon and physical wedge. In the case of difference in electron like the soft tissue, lung, and air, the transmission, absorption, and scattering were changed in the medium at high energy photon. Therefore, the treatment at the difference electron density should be inhomogeneity correction in treatment planning system.

A Comparison of Peripheral Doses Scattered from a Physical Wedge and an Enhanced Dynamic Wedge (금속쐐기와 기능강화동적쐐기의 조사야 주변부 선량 비교)

  • Park, Jong-Min;Kim, Hee-Jung;Min, Je-Soon;Lee, Je-Hee;Park, Charn-Il;Ye, Sung-Joon
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.107-117
    • /
    • 2007
  • In order to evaluate the radio-protective advantage of an enhanced dynamic wedge (EDW) over a physical wedge (PW), we measured peripheral doses scattered from both types of wedges using a 2D array of ion-chambers. A 2D array of ion-chambers was used for this purpose. In order to confirm the accuracy of the device we first compared measured profiles of open fields with the profiles calculated by our commissioned treatment planning system. Then, we measured peripheral doses for the wedge angles of $15^{\circ},\;30^{\circ},\;45^{\circ},\;and\;60^{\circ}$ at source to surface distances (SSD) of 80 cm and 90 cm. The measured points were located at 0.5 cm depth from 1 cm to 5 cm outside of the field edge. In addition, the measurements were repeated by using thermoluminescence dosimeters (TLD). The peripheral doses of EDW were (1.4% to 11.9%) lower than those of PW (2.5% to 12.4%). At 15 MV energy, the average peripheral doses of both wedges were 2.9% higher than those at 6MV energy. At a small SSD (80 cm vs. 90 cm), peripheral dose differences were more recognizable. The average peripheral doses to the heel direction were 0.9% lower than those to the toe direction. The results from the TLD measurements confirmed these findings with similar tendency. Dynamic wedges can reduce unnecessary scattered doses to normal tissues outside of the field edge in many clinical situations. Such an advantage is more profound in the treatment of steeper wedge angles, and shorter SSD.

  • PDF

Comparison of Enhanced Dynamic Wedge with Physical Metal Wedge based on the Basic Dosimetric Parameters (선량계측인자에 따른 기능강화동적쐐기와 금속쐐기의 비교)

  • Lee Jeong-Woo;Hong Semie;Choi Kyoung-Sik;Chung Jin-Beom;Choe Bo-Young;Jang Hong Seok;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.70-76
    • /
    • 2005
  • For clinical implementation of Enhanced Dynamic Wedge (EDW), it is necessary to adequately analyze and commission its dosimetric properties in comparison to common physical metal wedge (MTW). This study was implemented with the essential measurements of parameters for clinical application, such as percentage depth dose, peripheral dose, surface dose, effective wedge factor, and wedge profile. In addition, through the comparison study of EDW with open and MTW, the analysis was performed to characterize the EDW. We also compared EDW dose profiles of measured values using chamber array 24 (CA24) with calculated values using radiation treatment planning system. PDDs of EDW showed good agreements between $0.2\~0.5\%$ of open beam, but $2\%$ differences with MTW. In the result of the measurements of peripheral dose, it was shown that MTW was about $1\%$ higher than open field and EDW. The surface doses of $60^{\circ}$ MTW showed 10% lower than the others. We found that effective wedge factor of EDW had linear relationships according to Y jaw sizes and was independent of X jaw sizes and was independent of X jaw sizes and asymmetric Y jaw opening. In comparison with measured values and calculate values from Golden-STT based radiation treatment planning system (RTP system), it showed very good agreement within difference of $1\%$. It could be concluded that EDW is a very reliable and useful tool as a beam modification substitute for conventional MTW.

  • PDF