• Title/Summary/Keyword: enhanced biodegradation

Search Result 101, Processing Time 0.023 seconds

Phenanthrene biodegradation by Pseudonocardia hydrocarboxydans and Pseudomonas putida in presence of metabolic inducers

  • 조화영;신성호;우승한;박종문
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.340-343
    • /
    • 2003
  • Soils contaminated by hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), have become a major environmental issue due to toxic and carcinogenic properties of those compounds. In this work, we investigated effects of various metabolic inducers on phenanthrene biodegradation. Biodegradation tests were peformed with two different Pseudomonads: Pseudononrdia hydrocarboxydans (Gram positive) and Pseudomonas putida (Gram negative). Intermediates of phenanthrene metabolism (1-hydroxy-2-naphthoate, salicylate, catechol, phthalate and protocatechuate) were selected as inducers. The tests indicated that 1-hydroxy-2-naphthoate was the most effective inducer and enhanced the phenanthrene degradation rate up to 5.7 times, even though all the others also had induction ability to some extent. The effective induction could be achieved even at a low concentration of 1-hydroxy-2-naphthoate. Addition of metabolic inducers would be an attractive trick for the successful bioremediation of PAH-contaminated soil.

  • PDF

Enhanced Biodegradation of Environmental Allergen by a vgb-containing Burkholderia cepacia

  • Kim, Mi-Sun;Yoon, Suk-Ran;Jun, Woo-Jin;Park, So-Young;Yang, Young;Shim, Sang-In;Hwang, Kwang-Woo;Chung, Jin-Woong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.262-267
    • /
    • 2005
  • Using genetic engineering, the Vitreoscilla (bacterial) hemoglobin gene (vgb) was integrated stably into the chromosomes of and Burkholderia cepacia. Similar to previous results, the wild type VHb improved growth for Burkholderia cepacia and degradation of benzoic acid under both normal and low aeration conditions. The stable expression of VHb enhanced these parameters. The results demonstrate the possibility that the positive effects provided by VHb may be augmented by protein engineering.

Substrate Interactions in the Biodegradation of Volatile Organic Compounds by a Yeast Strain (Yeast에 의한 휘발성 유기화합물 분해에 있어서의 기질상호관계 해석)

  • Jang, Hyun Sup;Jeong, MI Young;Shin, Shoung Kyu;Song, Ji Hyeon;Hwang, Sun Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2008
  • Biological removal capacities for volatile organic compounds (VOCs) were determined using a yeast strain, Candida tropicalis. In this study, VOCs including toluene, benzene, p-xylene, and styrene as single substrates or mixtures were tested in the batch culture of the yeast strain. In addition, a kinetic model was applied to evaluate substrate interactions between the VOCs. The yeast strain was able to biodegrade each VOC effectively as a growth substrate, implying it could applied to wide range of VOCs. When the yeast strain was subjected to VOCs in mixtures, the biodegradation rate of one substrate were either increased (stimulated) or decreased (inhibited) by the presence of the others. Both benzene and toluene were inhibited by the other VOCs, and substrate interaction parameters estimated in the model indicated that styrene was the strongest inhibitor for the benzene and toluene biodegradation. Meanwhile, the biodegradation of p-xylene and styrene was stimulated by the presence of either benzene or toluene. The biodegradation rate of p-xylene was significantly increased especially by the presence of toluene, and the styrene biodegradation was enhanced greatly by the benzene addition. The results of the substrate interaction by the yeast strain suggest that the biodegradation rates for the VOCs in mixtures should be carefully evaluated. Furthermore, the competitive inhibition coefficient could be applied as a useful index to determine the substrate interaction

Enhancement of Paraoxon Biodegradation Rate from Recombinant Escherichia coli Catalyst for Bioremediation (Bioremediation을 위하여 재조합 대장균 촉매를 이용한 Paraoxon의 생분해 속도 향상)

  • Choi, Suk Soon;Seo, Sang Hwan;Kang, Dong Gyun;Cha, Hyung Joon;Yeom, Sung Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.110-116
    • /
    • 2006
  • In this study, the biodegradation rate of paraoxon, that is an organophosphate pesticide, was enhanced by recombinant Escherichia coli harboring organophosphorus hydrolase (OPH). The optimum conditions were 8.5 of initial pH and 5.0% of acetone for the enhancement of specific whole cell OPH activity. When the OPH was produced to 498 Unit/L, 98% of 275mg/L paraoxon was degraded within 10 minutes, and thus the biodegradation rate was enhanced to $29.2mg/g{\cdot}min$. The results implied that practical bioremediation technology developed in this study was an effective method to degrade residual organophosphate pesticide in ground water or soils in a short time.

  • PDF

Characterization of landfarming for bioremediation of petroleum-contaminated soil in Korea (유류오염토양의 생물학적 복원을 위한 국내 토양경작기술의 적용 특성)

  • Lee Kwang-Pyo;Lee Cheol-Hyo
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.107-125
    • /
    • 2004
  • A bioremediation of petroleum-contaminated soil in Korea was evaluated for the optimization of enhanced biodegradation and the minimization of effects of seasonal variations, The short-term bioremediation in combination of biopile pretreatment and landfarming was performed by lowering contaminated levels and overcoming the inhibiting factors in the rainy and winter seasons. A microbial density was maintained with indigenous microbial addition for bioaugmentation and with fertilizers for biostimulation. A lesser volatile and biodegradable fraction due to their abiotic removals following the biopile pretreatment was effectively removed by the laterally applied landfarming. The optimal temperature in greenhouse was maintained by buffering of the soil temperature even with slight decreases in removal rates during the winter and extensive leaching of nutrients and contaminants was restricted with adjusting the water contents during the Korean rainy season. Although the tilling process was effective for biodegradation with aeration only, the simultaneous treatment due to apparent mixing of nutrients and microbes more favorably degraded the petroleum than the sequential treatment.

  • PDF

Enhanced Biodegradation of Lindane Using Oil-in-Water Bio-Microemulsion Stabilized by Biosurfactant Produced by a New Yeast Strain, Pseudozyma VITJzN01

  • Abdul Salam, Jaseetha;Das, Nilanjana
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1598-1609
    • /
    • 2013
  • Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindane-contaminated environments.

Laboratory-scale Microcosm Studies in Assessing Enhanced Bioremediation Potential of BTEX and MTBE under Various Electron Acceptors in Contaminated Soil

  • 오인석;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.368-371
    • /
    • 2003
  • Accidental release of petroleum products from underground storage tank(USTs) is one of the most common causes of groundwater contamination. BTEX is the major components of fuel oils, which are hazardous substances regulated by many nations. In addition to BTEX, other gasoline consituents such as MTBE(methyl-t-buthyl ether), anphthalene are also toxic to humans. Natual attenuation processes include physic, chemical, and biological trasformation. Aerobic and anaerobic biodegradation are believed to be the major processes that account for both containment of the petroleum-hydrocarbon plum and reduction of the contaminant concentrations. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Anaerobic processes refer to a variety of biodegradation mechanisms that use nitrate, ferric iron, sulfate, and carbon dioxide as terminal electron accepters. The objectives of this study was to conduct laboratory-scale microcosm studies in assessing enhanced bioremediation potential of BTEX and MTBE under various electron accepters(aerobic, nitrate, ferric iron, sulfate) in contaminated Soil. these results suggest that, presents evidence and a variety pattern of the biological removal of aromatic compounds under enhanced nitrate-, Fe(III)-, sulfate-reducing conditions.

  • PDF

Implications of SPION and NBT Nanoparticles upon In Vitro and In Situ Biodegradation of LDPE Film

  • Kapri, Anil;Zaidi, M.G.H.;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1032-1041
    • /
    • 2010
  • The comparative influence of two nanoparticles [viz., superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT)] upon the in vitro and in situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium was studied. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in vitro conditions, ${\lambda}$-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/$CH_2$ vibrations, along with introduction of hydroxyl residues in the polymer backbone. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM), which revealed greater dissolution of the film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions, which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

Enhanced Biodegradation of 2,4,6-Trinitrotoluene (TNT) with Various Supplemental Energy Sources

  • Park, Chulhwan;Kim, Tak-Hyun;Kim, Sangyong;Kim, Seung-Wook;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.695-698
    • /
    • 2002
  • The biodegradation of 2,4,6-trinitrotoluene (TNT) was performed on a laboratory scale using P. putida originally isolated from explosive-contaminated soil. One hundred mg/1 of TNT was completely degraded within 20 h under optimum conditions. Various supplemental energy sources (carbon sources, nitrogen sources, and surfactant) were tested, with the main objective of identifying an inexpensive source and enhancing the degradation rate for large-scale biodegradation. Based on the degradation rate, molasses was selected as a possible supplemental carbon source, along with NH$_4$Cl and Tween 80 as a nitrogen source and surfactant, respectively. The degradation rate increased about 3.3 fo1d when supplemental energy sources were added and the degradation rate constant increased from 0.068 h$\^$-1/ to 0.224 h$\^$-1/. These results appear to be promising in application of the process to TNT-contaminated soil applications.