Browse > Article
http://dx.doi.org/10.4014/jmb.0912.12026

Implications of SPION and NBT Nanoparticles upon In Vitro and In Situ Biodegradation of LDPE Film  

Kapri, Anil (Department of Microbiology, G. B. Pant University of Agriculture and Technology)
Zaidi, M.G.H. (Department of Chemistry, G. B. Pant University of Agriculture and Technology)
Goel, Reeta (Department of Microbiology, G. B. Pant University of Agriculture and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.6, 2010 , pp. 1032-1041 More about this Journal
Abstract
The comparative influence of two nanoparticles [viz., superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT)] upon the in vitro and in situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium was studied. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in vitro conditions, ${\lambda}$-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/$CH_2$ vibrations, along with introduction of hydroxyl residues in the polymer backbone. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM), which revealed greater dissolution of the film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions, which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.
Keywords
SPION; NBT; LDPE film; biodegradation; FTIR; TG-DTG-DTA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Sah, A., A. Kapri, M. G. H. Zaidi, H. Negi, and R. Goel. 2010. Implications of fullerene-60 upon in-vitro LDPE biodegradation. J. Microbiol. Biotechnol. doi: 10.4014/jmb.0910.10025   DOI   ScienceOn
2 Hadad, D., S. Geresh, and A. Sivan. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100.   DOI   ScienceOn
3 Negi, H., A. Kapri, M. G. H. Zaidi, A. Satlewal, and R. Goel. 2009. Comparative in-vitro biodegradation studies of epoxy and its silicone blend by selected microbial consortia. Int. Biodeter. Biodegrad. 63: 553-558.   DOI   ScienceOn
4 Zaidi, M. G. H., P. L. Sah, S. Alam, and A. K. Rai. 2009. Synthesis of epoxy-ferrite nanocomposites in supercritical carbon dioxide. J. Exp. Nanosci. 4:55-66.   DOI   ScienceOn
5 Rana, S. and R. D. K. Misra. 2005. The anti-microbial activity of titania-nickel ferrite composite nanoparticles. J. Miner. Met. Mater. Soc. 57: 65-69.   DOI   ScienceOn
6 Satlewal, A., R. Soni, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J. Microbiol. Biotechnol. 18: 477-482.   과학기술학회마을
7 Oloffs, A., C. Crosse-Siestrup, S. Bisson, M. Rinck, R. Rudolvh, and U. Gross. 1994. Biocompatibility of silver-coated polyurethane catheters and silver-coated Dacron$(Cleantop{\circledR})$ material. Biomaterials 15: 753-758.   DOI   ScienceOn
8 Soni, R., A. Kapri, M. G. H. Zaidi, and R. Goel. 2009. Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J. Polym. Environ. 17: 233-239.   DOI   ScienceOn
9 Soni, R., S. Kumari, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Practical applications of rhizospheric bacteria in biodegradation of polymers from plastic wastes, pp. 235-243. In I. Ahmad, J. Pichtel, and S. Hayat (eds.). Plant Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH, Weinheim, Germany.
10 Oka, M., T. Tomioka, K. Tomita, A. Nishino, and S. Ueda. 1994. Inactivation of enveloped viruses by a silver-thiosulfate complex. Metal Based Drugs 1: 511.   DOI   ScienceOn
11 Orhan, Y. and H. Buyukgungor. 2000. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Biodeter. Biodegrad. 45: 49-55.   DOI   ScienceOn
12 Perez, L., M. Flores, J. Avalos, L. S. Miguel, L. Fonseca, and O. Resto. 2003. Comparative study of the growth curves of B. subtilis, K. pneumoniae, C. xerosis and E. coli bacteria in medium containing nanometric silicon particles. Mat. Res. Soc. Symp. Proc. Vol. 737. Materials Research Society.
13 Kwpp, L. R. and W. J. Jewell. 1992. Biodegradability of modified plastic films in controlled biological environments. Environ. Technol. 26: 193-198.   DOI
14 Ling, Y. H., J. J. Qi, X. F. Zou, X. M. Zhao, X. D. Bai, and Q. L. Feng. 2005. Antibacterial material, hydrothermal synthesis, ion-exchange, titanate nanotube. Key Eng. Mater. 280-283: 707-712.   DOI
15 Madigan, M. T., J. M. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms 10th Ed., pp. 145-147; 227-228 Pearson Education, Inc NJ.
16 Bikiaris, D., J. Aburto, I. Alric, E. Borredon, M. Botev, and C. Betchev. 1999. Mechanical properties and biodegradability of LDPE blends with fatty-acid esters of amylase and starch. J. Appl. Polym. Sci. 71: 1089-1100.   DOI   ScienceOn
17 Matsunaga, T. and M. Okochi. 1995. $TiO_2$-mediated photochemical disinfection of Escherichia coli using optical fibers. Environ. Sci. Technol. 29: 501.   DOI   ScienceOn
18 Neal, A. L. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17: 362-371.   DOI   ScienceOn
19 Albertsson, A. C., C. Barenstedt, and S. Karlsson. 1994. Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym. 45: 97-103.   DOI   ScienceOn
20 Flores, M., N. Colón, O. Rivera, N. Villalba, Y. Baez, D. Quispitupa, J. Avalos, and O. Perales. 2004. A study of the growth curves of C. xerosis and E. coli bacteria in mediums containing cobalt ferrite nanoparticles. Mat. Res. Soc. Symp. Proc. Vol. 820. Materials Research Society.
21 Goel, R., M. G. H. Zaidi, R. Soni, K. Lata, and Y. S. Shouche. 2008. Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int. Biodeter. Biodegrad. 61: 167-172.   DOI   ScienceOn
22 Kapri, A., M. G. H. Zaidi, A. Satlewal, and R. Goel. 2010. SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int. Biodeter. Biodegrad. 64: 238-244.   DOI   ScienceOn
23 Kapri, A., M. G. H. Zaidi, and R. Goel. 2009. Nanobarium titanate as supplement to accelerate plastic waste biodegradation by indigenous bacterial consortia. AIP Conf. Proc. 1147: 469-474.
24 Keskinen, H., J. M. Makela, M. Aromaa, J. Keskinen, S. Areva, C. V. Teixeira, et al. 2006. Titania and titania-silver nanoparticle deposits made by Liquid Flame Spray and their functionality as photocatalyst for organic- and biofilm removal. Catal. Lett. 111: 3-4.
25 Williams, D. N., S. H. Ehrman, and T. R. P. Holoman. 2006. Evaluation of the microbial growth response to inorganic nanoparticles. J. Nanobiotechnol. 4: 3.   DOI