• 제목/요약/키워드: enhanced bandwidth and gain

검색결과 31건 처리시간 0.022초

Enhanced-Gain Planar Substrate-Integrated Waveguide Cavity-Backed Slot Antenna with Rectangular Slot Window on Superstrate

  • Kang, Hyunseong;Lim, Sungjoon
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.1062-1065
    • /
    • 2014
  • A novel substrate-integrated waveguide (SIW) cavity-backed slot antenna is proposed in this study to achieve enhanced-gain performance. The peak gain is remarkably improved with the use of an SIW cavity and metallic superstrate. The superstrate comprises a single rectangular slot window and two half-wavelength patches. The gain can be enhanced by combining the in-phase radiating fields. Further, the 10 dB bandwidth of the proposed antenna ranges from 2.32 GHz to 2.49 GHz, which covers the wireless local area network band. The measured peak gain is 9.44 dBi at 2.42 GHz.

대역폭과 이득이 향상된 이중 다이폴 준-야기 안테나 설계 (Design of Double Dipole Quasi-Yagi Antenna with enhanced bandwidth and gain)

  • 여준호
    • 한국정보통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.252-258
    • /
    • 2017
  • 본 논문에서는 변형된 밸런과 두 개의 도파기를 이용하여 이중 다이폴 준-야기 안테나(double-dipole quasi-Yagi antenna; DDQYA)의 대역폭과 이득을 향상시키는 방법에 관하여 연구하였다. 제안된 DDQYA 안테나는 두 개의 서로 다른 길이의 스트립 다이폴 안테나, 접지 반사기, 두 개의 도파기로 구성된다. 대역폭을 늘리기 위해 변형된 밸런을 사용하였고, 중간 및 고주파수 대역에서 이득을 높이기 위해 두 개의 도파기를 추가하였다. 첫 번째 도파기의 길이와 폭에 따른 안테나의 특성 변화를 분석하여 1.60-2.90 GHz 대역에서 7 dBi이상의 이득을 얻기 위한 최종 설계 변수를 얻었다. 최종 설계된 DDQYA 안테나를 FR4 기판 상에 제작하고 특성을 실험한 결과 전압 정재파비(voltage standing wave ratio; VSWR)가 2 이하인 대역은 1.57-3.00 GHz이고, 1.60-2.90 GHz 대역에서 이득이 7.1-7.8 dBi로 7 dBi 이상을 유지하는 것을 확인하였다.

Modified TEM Horn for Enhanced Radiation Characteristics at Low Frequency

  • Kim, Jae Sik;Park, Hyeong Soon;Yoon, Young Joong;Ryu, Jiheon;Choi, Jin Soo
    • Journal of electromagnetic engineering and science
    • /
    • 제14권2호
    • /
    • pp.74-78
    • /
    • 2014
  • This paper presents a modified TEM horn that improves radiation characteristics at a low frequency region. The proposed antenna consists of an asymmetric TEM (ATEM) horn and a loop structure with an elliptical shape. The bandwidth and gain at low frequency region can be enhanced by using the ATEM horn configuration and adding a loop structure with an elliptical shape to the ATEM horn. The bandwidth of the proposed antenna is from 2.14 to over 20 GHz, whereas that of the conventional TEM horn is from 2.7 to over 20 GHz, where the dimensions of both antennas are the same except for the thickness of the loop structure. The physical and electrical dimensions of the proposed antenna are $60mm{\times}62.5mm{\times}64mm$ ($width{\times}height{\times}length$) and $0.428{\lambda}_L{\times}0.445{\lambda}_L{\times}0.456{\lambda}_L$, where ${\lambda}_L$ corresponds to the lowest frequency of the bandwidth. The realized gain of the proposed antenna is improved by 0.802 dB on average at the low frequency region (2 to 8 GHz), where the maximum gain increase is 2.932 dB when compared to a conventional TEM horn.

정착시간과 레귤레이션 특성을 개선한 LDO(Low Dropout Regulator)의 설계 (A Design of LDO(Low Dropout Regulator) with Enhanced Settling Time and Regulation Property)

  • 박경수;박재근
    • 전기학회논문지P
    • /
    • 제60권3호
    • /
    • pp.126-132
    • /
    • 2011
  • A conventional LDO(Low Dropout Regulator) uses one OPAMP and one signal path. This means that OPAMP's DC Gain and Bandwidth can't optimize simultaneously within usable power. This also appears that regulation property and settling time of LDO can't improve at the same time. Based on this idea, a proposed LDO uses two OPAMP and has two signal path. To improve regulation property, OPAMP where is used in the path which qualities DC gain on a large scale, bandwidth designed narrowly. To improve settling time, OPAMP where is used in the path which qualities DC gain small, bandwidth designed widely. A designed LDO used 0.5um 1P2M process and provided 200mA of output current. A line regulation and load regulation is 12.6mV/V, 0.25mV/mA, respectively. And measured settling time is 1.5us in 5V supply voltage.

직렬 급전 다이폴 쌍 안테나의 대역폭 및 이득 향상에 관한 연구 (A Study on Bandwidth and Gain Enhancement of Series-fed Dipole Pair Antenna)

  • 여준호;이종익
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.59-60
    • /
    • 2017
  • 본 논문에서는 변형된 밸런, 한 개의 도파기, 두 개의 기생 패치를 이용하여 이중 직렬-급전 다이폴 쌍 안테나(series-fed dipole pair antenna; SDPA)의 대역폭과 이득을 향상시키는 방법에 관하여 연구하였다. 제안된 SDPA는 두 개의 서로 다른 길이의 스트립 다이폴 안테나, 접지 반사기, 한 개의 도파기, 두 개의 기생 패치로 구성된다. 대역폭을 늘리기 위해 변형된 밸런을 사용하였고, 중간 및 고주파수 대역에서 이득을 높이기 위해 한 개의 도파기와 두 개의 기생 패치를 추가하였다. 최종설계된 SDPA를 FR4 기판 상에 제작하고 특성을 실험한 결과 전압 정재파비(voltage standing wave ratio; VSWR)가 2 이하인 대역은 1.56-3.10 GHz이고, 1.55-3.00 GHz 대역에서 이득이 7dBi 이상을 유지하는 것을 확인하였다.

  • PDF

A High-Gain Microstrip Patch Array Antenna Using a Superstrate Layer

  • Choi, Won-Kyu;Cho, Yong-Heui;Pyo, Cheol-Sik;Choi, Jae-Ick
    • ETRI Journal
    • /
    • 제25권5호
    • /
    • pp.407-411
    • /
    • 2003
  • A dielectric superstrate layer above a microstrip patch antenna has remarkable effects on its gain and resonant characteristics. This paper experimentally investigates the effect of a superstrate layer for high gain on microstrip patch antennas. We measured the gain of antennas with and without a superstrate and found that the gain of a single patch with a superstrate was enhanced by about 4 dBi over the one without a superstrate at 12 GHz. The impedance bandwidths of a single patch with and without a superstrate for VSWR < 2 were above 11%. The designed $2{\times}8$ array antenna using a superstrate had a high gain of over 22.5 dB and a wide impedance bandwidth of over 17%.

  • PDF

A Feedback Wideband CMOS LNA Employing Active Inductor-Based Bandwidth Extension Technique

  • Choi, Jaeyoung;Kim, Sanggil;Im, Donggu
    • 스마트미디어저널
    • /
    • 제4권2호
    • /
    • pp.55-61
    • /
    • 2015
  • A bandwidth-enhanced ultra-wide band (UWB) CMOS balun-LNA is implemented as a part of a software defined radio (SDR) receiver which supports multi-band and multi-standard. The proposed balun-LNA is composed of a single-to-differential converter, a differential-to-single voltage summer with inductive shunt peaking, a negative feedback network, and a differential output buffer with composite common-drain (CD) and common-source (CS) amplifiers. By feeding the single-ended output of the voltage summer to the input of the LNA through a feedback network, a wideband balun-LNA exploiting negative feedback is implemented. By adopting a source follower-based inductive shunt peaking, the proposed balun-LNA achieves a wider gain bandwidth. Two LNA design examples are presented to demonstrate the usefulness of the proposed approach. The LNA I adopts the CS amplifier with a common gate common source (CGCS) balun load as the S-to-D converter for high gain and low noise figure (NF) and the LNA II uses the differential amplifier with the ac-grounded second input terminal as the S-to-D converter for high second-order input-referred intercept point (IIP2). The 3 dB gain bandwidth of the proposed balun-LNA (LNA I) is above 5 GHz and the NF is below 4 dB from 100 MHz to 5 GHz. An average power gain of 18 dB and an IIP3 of -8 ~ -2 dBm are obtained. In simulation, IIP2 of the LNA II is at least 5 dB higher than that of the LNA I with same power consumption.

Design of Broadband Quasi-Yagi Antenna Using a Folded Dipole Driver

  • Ta, Son Xuat;Kim, Byoung-Chul;Choo, Ho-Sung;Park, Ik-Mo
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.227-233
    • /
    • 2011
  • This paper describes the development of a broadband quasi-Yagi antenna using a folded dipole driver. The antenna is designed on a low-permittivity substrate to reduce the surface wave effect, and hence the gain can be enhanced easily by adding directors. The folded dipole driver is connected to a 50-${\Omega}$ microstripline via a simple broadband microstrip-to-coplanar stripline transition with a quarter radial stub. The key motivation for the use of a folded dipole is to increase the input impedance at the driver, allowing a smaller mismatch loss between the antenna driver and the coplanar stripline feed. The proposed antenna has a measured bandwidth of 4.67~6.26 GHz for the -10 dB reflection coefficient, and a flat gain of 4.86~5.15 dB within the bandwidth.

A Numerically Efficient Full Wave Analysis of Circular Resonators Microbandes Stacked Involving Multimetallisations

  • Chebbara, F.;Fortaki, T.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.314-319
    • /
    • 2015
  • The conventional geometry of a plate microstrip resonator is made up of a single metallic patch, which is printed on a monolayer dielectric substrate. Its arrangement is simple and easy to make, but it is limited in its functional abilities. Many searches have been realized to improve the bandwidth and the gain of the microstrip resonators. Among the various configurations proposed in the open literature, the stacked geometry seems to be very promising. By appropriate design, it is able to provide the operation in dual frequency mode, wide bandwidth enough and high gain. The theoretical investigations of structures composed of two stacked anti-reflection coatings, enhanced metallic coatings are available in the literature, however, for the stacked configurations involving three metallic coatings or more, not to exact or approximate analysis was conducted due to the complexity of the structure.

Substrate-integrated-waveguide cavity-backed circularly polarized antenna with enhanced bandwidth and gain

  • Shankaragouda M. Patil;Rajeshkumar Venkatesan
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.404-412
    • /
    • 2024
  • We propose a method for increasing the bandwidth of a substrate-integrated-waveguide (SIW) cavity-backed antenna with taper-based micro-strip SIW transition feeding. For radio transmission, a circular slot is etched on top of the SIW cavity. For optimal antenna design, the slot is etched slightly away from the cavity center to generate circularly polarized waves. Simulations show a wide axial ratio bandwidth of 7.860% between 11.02 GHz and 11.806 GHz. Experimental results confirm a similar wide axial ratio bandwidth of 4.9% between 10.8 GHz and 11.35 GHz. An SIW feed from an inductive window excites the radiating circular slot, resulting in a simulated wide impedance range of 1.548 GHz (10.338 GHz-11.886 GHz) and bandwidth of 13.93%. Experimental results show a wide impedance of 2.08 GHz (10.2 GHz-12.08 GHz) and bandwidth of 18.84%. The SIW cavity-backed antenna creates a unidirectional pattern, leading to gains of 6.61 dBi and 7.594 dBi in simulations and experiments, respectively. The proposed antenna was fabricated on a Rogers RT/Duroid 5880 substrate, and the reflection coefficient, radiation patterns, and gains were tested and compared using a computer simulator. The developed broadband antenna seems suitable for X-band applications.