• Title/Summary/Keyword: engineering tools

Search Result 3,945, Processing Time 0.027 seconds

Development of Diagnostic Expert Systems for A Rotor System (로터시스템의 이상진단시스템에 대한 연구)

  • Kim, Sung-Chul;Kim, Sang-Pyo;Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2001
  • A rotor system is composed of a rotating shaft with supporting bearings. The rotor system is widely used in every rotating machinery such as the turbine generator and the high precision machine tools. A negligible error or malfunction in the rotor, however, can cause a catastrophic failure in the system then result in the environmental and economic disasters. A diagnosis of the rotor system is important in preventing these kinds of failures and disasters. Up to now, many researchers have devoted in the development of diagnosing tools for the system. The basic principles behind the tools are to retrieve the data through the sensors for a specific state of the system and then to identify the specific state through the heuristic methods such as neural network, fuzzy logic, and decision matrix. The proper usage of the heuristic methods will enhance the performance of the diagnostic procedure when together used with the statistical signal processing. In this paper, the methodologies in using the above 3 heuristic methods for the diagnostics of the rotor system are established and also tested and validated for the data retrieved from the rolling element bearing and journal bearing supported system.

  • PDF

Cutting Characteristics on Rake Angle in Laser-Assisted Machining of Silicon Nitride (질화규소의 예열선삭가공시 경사각에 따른 절삭특성)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Lim, Se-Hwan;Kim, Jong-Do;Lee, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.47-54
    • /
    • 2009
  • In the last few years, lasers have found new applications as tools for ceramic machining which is laser-assisted machining(LAM). LAM process for the machining of difficult-to-machine materials such as structural ceramics, has recently been studied on silicon nitride workpiece for a wide range of operating condition. However, there have been few studies on rake angle in LAM process. In this paper we analyzed difference of machinability between positive and negative rake angle in tools. We have obtained interesting results that we could eliminate chattering, lower specific cutting and cutting ratio in case of positive rake angle. The results suggest that positive rake angled tools can make more plastic deformation and stable cutting of silicon nitride in comparison with negative rake angled one.

Research into Head-body Thermal Bending for High-accuracy Thermal Error Compensation (고정도 열변위보정을 위한 주축대의 열적굽힘에 대한 연구)

  • Kim, Tae-Weon;Hah, Jae-Yong;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.56-64
    • /
    • 2002
  • Machine tools are engineered to give high dimensional accuracy in machining operation. However, errors due to thermal effects degrade dimensional accuracy of machine tools considerably, and many machine tools are equipped with thermal error compensation function. In general, thermal errors can be generated in the angular directions as well as linear directions. Among them, thermal errors in the angular directions contribute a large amount of error components in the presence of offset distance as in the case of Abbe error. Because most of thermal error compensation function is based on a good correlation between temperature change and thermal deformation, angular thermal deformation is often to be the most difficult hurdle for enhancing compensation accuracy. In this regard, this paper investigates the effect of thermal bending to total thermal error and gives how to deal with thermally induced bending effects in thermal error compensation.

Developing Teaching Materials for Practical Work by Student Dismantling and Assembly using an All Terrain Vehicle

  • Tsukamoto, Kimihide;Ueno, Takayuki;Yamamoto, Keiichiro;Ohbuchi, Yoshifumi;Sakamoto, Hidetoshi
    • Journal of Engineering Education Research
    • /
    • v.13 no.2
    • /
    • pp.38-42
    • /
    • 2010
  • It is necessary for lower grade students to study the correct usage of tools as a base of the technical education for dismantling and assembling various machines. However, enough understanding has not been obtained though the usage of these tools when training first grade students. So, we started to develop a teaching text and materials within the students' practice curriculum based on the dismantling and assembly of all-terrain vehicle [ATV]'s, which is a very motivating for lower grade students. This practice makes the student learn both how to use the tools and the steering mechanism of cars through the dismantling and assembling of the ATV. It is possible to not only have the student learn about the knowledge obtained through the practice, but also they also acquire wider and deeper knowledge through making the text and teaching materials for the practice. The textbook and secondary educational materials of this practice curriculum were created in cooperation with a fifth grade student as part of their graduation research. As a result, an effective teaching and learning text and secondary educational material regarding manufacturing practice could be developed from the student's point of view. Making a teaching text and materials is effective for promoting the study and experience of engineering.

  • PDF

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • v.23
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

Development of Software Education Products Based on Physical Computing (피지컬 컴퓨팅 기반 소프트웨어 교육용 제품 개발)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.595-600
    • /
    • 2019
  • Educational tools for infants and younger students are becoming smarter as ICT-based digital technology convergence extends according to the development of technology. As the digital interaction function of smart education tools gives students greater immersion and fun, a learning might become a play to the students. The technologies used in the implementation of smart education tools come from the disciplines of robotics, computer engineering, programming, and engineering and mathematical foundations and these can be integrated into the field of education itself. This paper designs and implements a product based on optimized physical computing for R&D and education in consideration of the characteristics of educational tool robots used in the field education. It was developed to enable physical education for sensing information processing, software design and programming practice training that is the basis of robot system.

A Study on Status of Domestic Machine Tools Remanufacturing Technology Development and Improvement of Standard Process (국내 공작기계 재제조 기술개발 현황 및 표준공정 개선방안 연구)

  • Sung-woo Shin;Sang-Seok Seol;Young-Hwa Roh;Hyun-Su Kim;Min-Seong Park;Won-Jee Chung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.415-424
    • /
    • 2024
  • This study analyzes trends and characteristics of the machine tool remanufacturing industry and proposes a standard process that considers environmental impact assessment during the remanufacturing process. First, trends in remanufacturing and environmental regulations are reviewed. And the current status of the machine tool remanufacturing industry and cases of national R&D projects related to machine tools are analyzed. Machine tool remanufacturing has a high resource saving effect, and remanufacturing is carried out as a finished product rather than as a part. And the scope of remanufacturing work is very wide due to the performance improvement of the machine and the addition of features. In order for the machine tool remanufacturing industry to be competitive, it is necessary to create products with high added value. In addition, in order to respond to international environmental regulations, it is necessary to secure related data by conducting an environmental impact assessment together during remanufacturing.

A Modified-AHP Method of Productivity Analysis for Deployment of Innovative Construction Tools on Construction Site

  • Kwon, Soonwook;Lee, Gaeyoung;Ahn, Dooyong;Park, Hee-Sung
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • Productivity analysis is the most important and significant method for evaluating management and engineering performance during whole project stage. However, it is very difficult in developing qualitative index to construction industry comparing to other industries. Therefore, analytical hierarchy process (AHP) is one of the methods for overcoming these limitations by checking consistency index using duality comparison. In this study, it is scraped up an application plan and selection for innovative tools by analyzing survey results on tool users and site managers with respect to using Modified-AHP performance measurement method.

Development of a configuration manager in a machine tools engineering data managment system (공작기계 설계지원 기술정보 시스템의 구성 관리자 개발)

  • 강선구;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.716-719
    • /
    • 1995
  • Although design process is a creative work, it includes a lot of iterations. Statistics show that about 15 to 40 percent of the total design activity is spent on time-consuming retrieval of technical informations such as standard part, handbook, engineering equation,previous design and so on. On the other hand, product structure and parts specifications change with the design process, which also need to be traced accordingly. The BOM, design history, and all the relecant technical informations can be managed can be efficiently within a unified framework called configuration. This paper presents a prototype of a configuration manager which is a part of the engineering data management system for machine tools.

  • PDF