• Title/Summary/Keyword: engineering system

Search Result 100,862, Processing Time 0.15 seconds

Degradation of Microcystin-LR, Taste and Odor, and Natural Organic Matter by UV-LED Based Advanced Oxidation Processes in Synthetic and Natural Water Source (UV-LED기반 고도산화공정을 이용한 수중 마이크로시스틴-LR, 이취미 물질, 자연유기물 분해)

  • Yang, Boram;Park, Jeong-Ann;Nam, Hye-Lim;Jung, Sung-Mok;Choi, Jae-Woo;Park, Hee-Deung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.246-254
    • /
    • 2017
  • Microcystin-LR (MC-LR) is one of most abundant microcystins, and is derived from blue-green algae bloom. Advanced oxidation processes (AOPs) are effective process when high concentrations of MC-LR are released into a drinking water treatment system from surface water. In particular, UV-based AOPs such as UV, $UV/H_2O_2$, $UV/O_3$ and $UV/TiO_2$ have been studied for the removal of MC-LR. In this study, UV-LED was applied for the degradation of MC-LR because UV lamps have demonstrated some weaknesses, such as frequent replacements; that generate mercury waste and high heat loss. Degradation efficiencies of the MC-LR (initial conc. = $100{\mu}g/L$) were 30% and 95.9% using LED-L (280 nm, $0.024mW/cm^2$) and LED-H (280 nm, $2.18mW/cm^2$), respectively. Aromatic compounds of natural organic matter changed to aliphatic compounds under the LED-H irradiation by LC-OCD analysis. For application to raw water, the Nak-dong River was sampled during summer when blue-green algae were heavy bloom in 2016. The concentration of extracellular and total MC-LR, geosmin and 2-MIB slightly decreased by increasing the LED-L irradiation; however, the removal of MC-LR by UV-LED (${\lambda}=280nm$) was insufficient. Thus, advanced UV-LED technology or the addition of oxidants with UV-LED is required to obtain better degradation efficiency of MC-LR.

Characteristics of Non-point Pollutants Discharge in a Small Agricultural Watershed during Farming Season (영농기 농촌 소유역의 비점오염물질 유출 특성)

  • Kim, Jin-Ho;Lee, Jong-Sik;Ryu, Jong-Su;Lee, Kyung-Do;Jung, Goo-Bok;Kim, Won-Il;Lee, Jeong-Taek;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.77-82
    • /
    • 2005
  • This study was conducted to identify the characteristics of non-point pollutants discharge in a small agricultural watershed during farming season. for this purpose, the Neoungchon watershed in Goesangun was selected as a typical agricultural area. Runoff and water quality data in the stream, the domestic sewage and the precipitation of the watershed were analyzed periodically from June 1 to November 6 in 2004 and pollutant loads were estimated. As a result the mean concentrations of BOD, SS, TN and TP in the stream were 3.0, 76.7, 8.7, 0.16 mg/L in rainy season and 2.4, 10.0, 3.5, 0.11 mg/L in dry season respectively. Daily discharge of non-point pollutant occurred above of 95% in rainy period. Measured pollutant loads in the watershed were $26.63kg/km^2/day$ of T-N and $0.62kg/km^2/day$ of T-P, within the range of other research results. Effluent loads based on guideline of total pollutant to stream management of MOE (Ministry of Environment) were less than delivery loads since the guideline could not reflect the agricultural practices, geomorphic and meteorological characteristics in an agricultural watershed.

A Study on the Effect of Spirulina-containing Cosmetics Using Micro-Needle (미세다륜침을 이용한 스피루리나 함유 화장품의 효과 연구)

  • Jung, SuJin;Lee, Hyunjin;Li, ShunHua
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.269-276
    • /
    • 2017
  • In this study, a test was conducted to examine the effects of micro-needle therapy (MTS) and cosmetics containing spirulina on improving the skin tone, skin hydration, hyper-pigmentation, and fine lines of middle-aged women in their 40s and 50s and to propose an effective skin care method. The subjects were divided into a control group of eight people who used serum and cream mask that does not contain MTS and spirulina, and an experimental group who used serum and cream containing MTS and spirulina. The test was conducted with six 30-minute sessions for one week. The change in skin was measured over three times in the week of the test, after six weeks of the test, and two weeks after the test had finished. The result showed that after six weeks of the test, in the experimental group, the skin tone (color brightness, saturation brightness, skin brightness) and moisture showed a significant increase (p<0.05), while the number of small hyper-pigmentation and large hyper-pigmentation, as well as the length of crow's feet, melanin, erythema showed a significant reduction (p<0.05). No significant differences in fine lines under the eyes and length of crow's feet were observed. Two weeks after the test was finished, the experimental group showed a significant decrease in the length of crow's feet and melanin (p<0.05), and a significant increase in skin brightness and moisture (p<0.05). Even after the test was completed, the skin brightness, fine lines, melanin, and moisture improved continuously. In conclusion, skin care using MTS and cosmetics containing spirulina was more effective on improving the skin tone, hydration, hyper-pigmentation, and fine lines, than skin care without using them.

Comparative Evaluation for Environmental Impact of Rapeseed and Barley Cultivation in Paddy Field for Winter using Life Cycle Assessment (겨울논 유채와 보리 재배시 전과정평가 방법을 이용한 환경영향 비교 평가)

  • Hong, Seung-Gil;Shin, JoungDu;Park, Kwang-Lai;Ahn, Min-Sil;Ok, Yong-Sik;Kim, Jeong-Gyu;Kim, Seok-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.59-68
    • /
    • 2016
  • The application of the Life Cycle Assessment (LCA) methodology to assess the environmental impact of rapeseed cultivation in winter fallow after harvesting rice was investigated and compared with barley cultivation in crop rotation system. Data for input materials were collected and analyzed by 1 ton rapeseed and barley as functional unit. For the Life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact method. From the comparison of impact categories such as greenhouse effect, ozone depletion, acidification, heavy metals, carcinogens, summer smog, and energy resources for 1 ton of final product, emission potential from rapeseed was higher than that from barley. The range from 65 to 96% of these potential came from chemical fertilizer. On the other hand, eutrophication potential from barley was higher than that from rapeseed, mainly came from utilizing the chemical fertilizer. During the cultivation of barley and rape, environmental burden by heavy metals was evaluated by 0.5 Pt, larger than points from other impact categories. The sum of points from all impact categories in barley and rapeseed was calculated to be 0.78 Pt and 0.82 Pt, respectively. From the sensitivity analysis for barley and rapeseed, scenario 1 (crop responses to fertilization level) showed the environmental burden was continuously increased with the amount of fertilization in barley cultivation, while it was not increased only at the optimum crop responses to fertilization in rapeseed (R3). With these results, rapeseed cultivation in winter fallow paddy contributed to the amounts of environmental burden much more than barley cultivation. It is, however, highly determined that environmental weighted point resulted from evaluating both cultivation was not significantly different.

Estimation of Spatial Accumulation and transportation of Chl-$\alpha$ by the Numerical Modeling in Red Tide of Chinhae Bay (진해만 적조에 있어서 수치모델링에 의한 Chl-$\alpha$의 공간적 집적과 확산 평가)

  • Lee Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The summer distribution of $Cha-{alpha}$ and physical processes for simulating outbreak region of red tide were estimated by the Eco-Hydrodynamic model in Chinhae Bay. As a result of simulation of surface residual currents, the southward flow come in contact with the northward flow at the inlet and western part of bay in case of windlessness and below wind velocity 2 m/sec. As wind velocity increases, the velocity and direction of currents were fairly shifted. The predicted concentration of $Cha-{alpha}$ exceeded 20 mg/㎥ in Masan and Haengam Bays, and most regions were over 10 mg/㎥, which meant the possibility of red tide outbreak. From the results of the contributed physical processes to $Cha-{alpha}$, accumulation sites were distributed at the northern part of Kadok channel, around the Chilcheon island, the western part of Kajo island and some area of Chindong Bay. On the other hand, inner parts of the study area such as Masan Bay were estimated as the sites of strong algal activities. Masan and Haengam Bay are considered as the initial outbreak region of red tide by the modeling and observed data, and then red tide expanded to other areas such as physical accumulation region and western inner bay, as depending on environmental variation. The increase of wind velocity led to decrease of $Cha-{alpha}$ and enlargement of accumulation region. The variation of intensity of radiation and sunshine duration caused to rapidly fluctuation of $Cha-{alpha}$: however, it was not largely affected by the variation of pollutant loads from the land only.

  • PDF

A Preliminary Analysis on the International Management System for the Ocean fertilization with Iron at High Seas (해양 철분 시비(施肥)사업의 국제 관리체제 예비 분석)

  • Hong, Gi-Hoon;Sohn, Hyo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.138-149
    • /
    • 2008
  • Rapid accumulation of carbon dioxide in the atmosphere for the past century leads to acidify the surface ocean and contributes to the global warming as it forms acid in the ocean and it is a green house gas. In order to curb the green house gas emissions, in particular carbon dioxide, various multilateral agreements and programs have been established including UN Convention of Climate Change and its Kyoto Protocol for the last decades. Also a number of geo-engineering projects to manipulate the radiation balance of the earth have been proposed both from the science and industrial community worldwide. One of them is ocean fertilization to sequester carbon dioxide from the atmosphere through the photosynthesis of phytoplankton in the sea. Deliberate fertilization of the ocean with iron or nitrogen to large areas of the ocean has been proposed by commercial sector recently. Unfortunately the environmental consequences of the large scale ocean iron fertilization are not known and the current scientific information is still not sufcient to predict. In 2007, the joint meeting of parties of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972 and 1996 Protocol (London Convention/Protocol) has started considering the purposes and circumstances of proposed large-scale ocean iron fertilization operations and examined whether these activities are compatible with the aims of the Convention and Protocol and explore the need, and the potential mechanisms for regulation of such operations. The aim of this paper is to review the current development on the commercial ocean fertilization activities and management regimes in the potential ocean fertilization activities in the territorial sea, exclusive economic zone, and high seas, respectively, and further to have a view on the emerging international management regime to be London Convention/Protocol in conjunction with a support from the United Nations General Assembly through The United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea.

  • PDF

Physical Properties and Detachment Characteristics of Persimmon Fruit (감 과실(果實)의 물리성(物理性)및 이탈특성(離脫特性))

  • Kim, Tae Han
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.62-69
    • /
    • 1985
  • In order to develop the mechanical fruit harvest system the detachment force, type and torque investigated and analyse as several loading modes were applied on the fruit-stem of the persimmon fruit. A proving ring with strain gauges was used for the experiment. The following conclusions were drawn from the results : The mode of withdrawl of the stem from the calyx appeared highly as the persimmon fruit matured. The mode of failure at the junction of the stem and calyx which was desirable mode for mechanical fruit harvest increased as the angular displacement of the fruit with respect to the stem axis increased from zero to ninety degrees. However the mode of failure of the fruiting branch decreased for the same degree of angle pull as above. The range of detachment force of the persimmon fruit was from 13 to 5 kg. The detachment force decreased from 47 to 8 % as the fruit matured. Also, the force decreased from 31 to 24 % for the same maturity levels as the angular displacement of the fruit with respect to the stem axis increased from zero to ninety degrees. The range of detachment force to weight ratio(F/W) of the fruit was from 130 to 54 approximately. The detachment force to weight ratio (F/W) decreased from 36 to 8 % as the fruit matured. Also, the ratio (F/W) decreased from 49 to 33 % for the same maturity levels as the same degree of angle pull as above. In order to remove fruit from tree the desirable force applied to the stem is approximately from 1,280 to 530 kg. Also, the desirable torque to remove the fruits was approximately from 1.1 to $0.5kg{\cdot}cm$.

  • PDF

Dispersion of Air Pollutants from Ship Based Sources in Incheon Port (인천항의 선박오염원에서 배출된 대기오염물질의 확산)

  • Kim, Kwang-Ho;Kwon, Byung Hyuk;Kim, Min-Seong;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2017
  • Emissions of pollutants from ship-based sources are controlled by the International Maritime Organization (IMO). Since pollutants emitted from ship may be dispersed to the land, controlling emissions from ships is necessary for efficient air quality management in Incheon, where exposure to ship-based pollution is frequent. It has been noted that the ratios of air pollutant emissions from coastal areas to inland areas are about 14% for NOx and 10% for SOx. The air quality of coastal urban areas is influenced by the number of ships present and the dispersion pattern of the pollutants released depending on the local circulation system. In this study, the dispersion of pollutants from ship-based sources was analyzed using the numerical California Puff Model (CALPUFF) based on a meteorological field established using the Weather Research and Forecasting Model (WRF). Air pollutant dispersion modeling around coastal urban regions such as Incheon should consider point and line sources emitted from both anchored and running ships, respectively. The total average NOx emissions from 82-84 ships were 6.2 g/s and 6.8 g/s, entering and leaving, respectively. The total average SOx emissions from 82-84 ships, entering and leaving, were 3.6 g/s and 5.1 g/s, respectively. The total average emissions for NOx and SOx from anchored ships were 0.77 g/s and 1.93 g/s, respectively. Due to the influence of breezes from over land, the transport of pollutants from Incheon Port to inland areas was suppressed, and the concentration of NOx and SOx inland were temporarily reduced. NOx and SOx were diffused inland by the sea breeze, and the concentration of NOx and SOx gradually increased inland. The concentration of pollutants in the area adjacent to Incheon Port was more influenced by anchored ship in the port than sea breezes. We expect this study to be useful for setting emission standards and devising air quality policies in coastal urban regions.

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

Nutrient Recovery from Sludge Fermentation Effluent in Upflow Phosphate Crystallization Process (상향류 인 결정화공정을 이용한 슬러지 발효 유출수로 부터의 영양소 회수)

  • Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.866-871
    • /
    • 2006
  • The nutrient recovery in phosphate crystallization process was investigated by using laboratory scale uptlow reactors, adopting sequencing batch type configuration. The industrial waste lime was used as potential cation source with magnesium salt($MgCl_2$) as control. The research was focused on its successful application in a novel integrated sludge treatment process, which is comprised of a high performance fermenter followed by a crystallization reactor. In the struvite precipitation test using synthetic wastewater first, which has the similar characteristics with the real fermentation effluent, the considerable nutrient removal(about 60%) in both ammonia and phosphate was observed within $0.5{\sim}1$ hr of retention time. The results also revealed that a minor amount(<5%) of ammonia stripping naturally occurred due to the alkaline(pH 9) characteristic in feed substrate. Stripping of $CO_2$ by air did not increase the struvite precipitation rate but it led to increased ammonia removal. In the second experiment using the fermentation effluent, the optimal dosage of magnesium salt for struvite precipitation was 0.86 g Mg $g^{-1}$ P, similar to the mass ratio of the struvite. The optimal dosage of waste lime was 0.3 g $L^{-1}$, resulting in 80% of $NH_4-N$ and 41% of $PO_4-P$ removal, at about 3 hrs of retention time. In the microscopic analysis, amorphous crystals were mainly observed in the settled solids with waste lime but prism-like crystals were observed with magnesium salt. Based on mass balance analysis for an integrated sludge treatment process(fermenter followed by crystallization reactor) for full-scale application(treatment capacity Q=158,880 $m^3\;d^{-1}$), nutrient recycle loading from the crystallization reactor effluent to the main liquid stream would be significantly reduced(0.13 g N and 0.19 g P per $m^3$ of wastewater, respectively). The results of the experiment reveal therefore that the reuse of waste lime, already an industrial waste, in a nutrient recovery system has various advantages such as higher economical benefits and sustainable treatment of the industrial waste.