• Title/Summary/Keyword: engineering system

Search Result 100,529, Processing Time 0.119 seconds

Development of an Automatic Seed Marker Registration Algorithm Using CT and kV X-ray Images (CT 영상 및 kV X선 영상을 이용한 자동 표지 맞춤 알고리듬 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Radiation Oncology Journal
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: The purpose of this study is to develop a practical method for determining accurate marker positions for prostate cancer radiotherapy using CT images and kV x-ray images obtained from the use of the on- board imager (OBI). $\underline{Materials\;and\;Methods}$: Three gold seed markers were implanted into the reference position inside a prostate gland by a urologist. Multiple digital image processing techniques were used to determine seed marker position and the center-of-mass (COM) technique was employed to determine a representative reference seed marker position. A setup discrepancy can be estimated by comparing a computed $COM_{OBI}$ with the reference $COM_{CT}$. A proposed algorithm was applied to a seed phantom and to four prostate cancer patients with seed implants treated in our clinic. $\underline{Results}$: In the phantom study, the calculated $COM_{CT}$ and $COM_{OBI}$ agreed with $COM_{actual}$ within a millimeter. The algorithm also could localize each seed marker correctly and calculated $COM_{CT}$ and $COM_{OBI}$ for all CT and kV x-ray image sets, respectively. Discrepancies of setup errors between 2D-2D matching results using the OBI application and results using the proposed algorithm were less than one millimeter for each axis. The setup error of each patient was in the range of $0.1{\pm}2.7{\sim}1.8{\pm}6.6\;mm$ in the AP direction, $0.8{\pm}1.6{\sim}2.0{\pm}2.7\;mm$ in the SI direction and $-0.9{\pm}1.5{\sim}2.8{\pm}3.0\;mm$ in the lateral direction, even though the setup error was quite patient dependent. $\underline{Conclusion}$: As it took less than 10 seconds to evaluate a setup discrepancy, it can be helpful to reduce the setup correction time while minimizing subjective factors that may be user dependent. However, the on-line correction process should be integrated into the treatment machine control system for a more reliable procedure.

Study for the Geochemical Reaction of Ca-feldspar, Amphibole and Olivine with Supercritical $CO_2$ and Brine on the $CO_2$ Sequestration Condition (이산화탄소 지중저장 조건에서 초임계이산화탄소와 염수 반응에 의한 Ca-사장석, 각섬석, 감람석의 지화학적 변화 연구)

  • Kang, Hyun-Min;Park, Min-Ho;Park, Sang-Hee;Lee, Min-Hee;Wang, Soo-Kyun
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.123-133
    • /
    • 2011
  • The lab scale experiments to investigate the geochemical reaction among supercritical $CO_2$-mineral-brine which occurs at $CO_2$ sequestration sites were performed. High pressurized cell system (l00 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. From the high pressurized cell experiment, the surface changes of Ca-feldspar, amphibole (tremolite) and olivine, resulted from the supercritical $CO_2$-mineral-brine reaction, were observed and the dissolution of minerals into the brine was also investigated. The mineral slabs were polished and three locations on the surface were randomly selected for the image analysis of SPM and the surface roughness value (SRV) of those locations were calculated to quantify the change of mineral surface for 30 days. At a certain time interval, SPM images and SRVs of the same mineral surface were acquired. The secondary minerals precipitated on the mineral surfaces were also analyzed on SEM/EDS after the experiment. From the experiments, the average SRV of Ca-feldspar increased from 2.77 nm to 20.87 nm for 30 days, suggesting that the dissolution of Ca-feldspar occurs in active when the feldspars contact with supercritical $CO_2$ and brine. For the amphibole, the average SRV increased from 2.54 nm to 8.31 nm and for the olivine from 0.77 nm to 11.03 run. For the Ca-feldspar, $Ca^{2+}$, $Na^+$, $Fe^{2+}$, $Si^{4+}$, $K^+$ and $Mg^{2+}$ were dissolved in the highest order and $Si^{4+}$, $Ca^{2+}$, $Fe^{2+}$ and $Mg^{2+}$ for the amphibole. Fe (or Mg) - oxides were precipitated as the secondary minerals on the surfaces of amphibole and olivine after 30 days reaction. Results suggested that $Ca^{2+}$, $Fe^{2+}$ and $Mg^{2+}$ rich minerals would be significantly weathered when it contacts with the supercritical $CO_2$ and brine at $CO_2$ sequestration sites.

Environmental Impact Assessment of Rapeseed Cultivation by Life Cycle Assessment (전과정평가를 이용한 유채재배의 환경영향 평가)

  • Hong, Seung-Gil;Nam, Jae-Jak;Shin, Joung-Du;Ok, Yong-Sik;Choi, Bong-Su;Yang, Jae-E.;Kim, Jeong-Gyu;Lee, Sung-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • BACKGROUND: High input to the arable land is contributed to increasing productivity with causing the global environmental problems at the same time. Rapeseed cultivation has been forced to reassess its positive point for utilization of winter fallow field. The Objective of this study was performed to assess the environmental impact of rapeseed cultivation with double-cropping system in paddy rice on Yeonggwang district using life cycle assessment technique. METHODS AND RESULTS: For assessing each stage of rapeseed cultivation, it was collected raw data for input materials as fertilizer and pesticide and energy consumption rate by analyzing the type of agricultural machinery and working hours by 1 ton rapeseed as functional unit. Environmental impacts were evaluated by using Eco-indicator 95 method for 8 impact categories. It was estimated that 216 kg $CO_2$-eq. for greenhouse gas, 3.98E-05 kg CFC-11-eq. for ozone lazer depletion, 1.78 kg SO2-eq. for acidification, 0.28 kg $PO_4$-eq. for eutrophication, 5.23E-03 kg Pb-eq. for heavy metals, 2.51E-05 kg B(a)p-eq. for carcinogens, 1.24 kg SPM-eq. for smog and 6,460 MJ LHV for energy resource are potentially emitted to produce 1 ton rapeseed during its whole cultivation period, respectively. It was considered that 90% of these potential came from chemical fertilizer. For the sensitivity analysis, by increasing the productivity of rapeseed by 1 ton per ha, potential environmental loading was reduced at 22%. CONCLUSION(s): Fertilization affected most dominantly to the environmental burden, originated from the preuse stage, i.e. fertilizer manufacturing and transporting. It should be included and assessed an indirect emission, which is not directly emitted from agricultural activities. Recycling resource in agriculture with reducing chemical fertilizer and breeding the high productive variety might be contribute to reduce the environmental loading for the rapeseed cultivation.

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

Factors Affecting Wet-Paddy Threshing Performance (탈곡기의 제작동요인이 벼의생탈곡성능에 미치는 영향)

  • 남상일;정창주;류관희
    • Journal of Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 1980
  • Threshing operation may be one of the most important processes in the paddy post-production system as far as the grain loss and labor requirement are concerned . head-feeding type threshers commercially available now in Korea originally were developed for threshing dry paddy in the range of 15 to 17 % in wet basis. However, threshing wet-paddy with the grain moisture content above 20 % has been strongly recommended, especially for new high-yielding Indica -type varieties ; (1) to reduce high grain loss incurred due to the handling operations, and (2) to prevent the quantitative and qualitative loss of milled -rice when unthreshed grains are rewetted due to the rainfall. The objective of this study were to investigate the adaptability of both a head-feeding type thresher and a throw-in type thresher to wet-paddy , and to find out the possiblilities of improving the components of these threshers threshing. Four varieties, Suweon 264 and Milyang 24 as Tongil sister line varieties, minehikari and Jinhueng as Japonica-type varieties, were used at the different levels of the moisture content of grains. Both the feed rate and the cylinder speed were varied for each material and each machine. The thresher output quality , composition of tailing return, and separating loss were analyzed from the sampels taken at each treatment. A separate experiment for measurement opf the power requirement of the head-feeding type thresher was also performed. The results are summarized as follows : 1. There was a difference in the thresher output quality between rice varieties. In case of wet-paddy threshing at 550 rpm , grains with branchlet and torn heads for the Suweon 264 were 12 % and 7 % of the total output in weight, respectively, and for the Minehikari 4.5 % and 2 % respectively. In case of dry paddy threshing , those for the Suweon 264 were 8 % and 5% , and for the Minehikari 4% and 1% respectively. However, those for the Milyang 23 , which is highly susceptable to shattering, were much lower with 1 % and 0.5% respectively, regardless of the moisture content of the paddy. Therefore, it is desirable to breed rice varieties of the same physical properties as well as to improve a thresher adaptable to all the varieties. Torn heads, which increased with the moisture content of rall the varieties except the Milyang 23 , decreased as the cylinder speed increased, but grains with branchlet didnt decrease. The damaged kernels increased with the cylinder speed. 3. The thresher output quality was not affected much by the feed rate. But grains with branchlet and torn heads increased slightly with the feed rate for the head-feeding type thresher since higher resistance lowered at the cylinder speed. 4. In order to reduce grains with branchlet and torn heads in wet-paddy threshing , it is desirable to improve the head-feeding type thresher by developing a new type of cylinder which to not give excess impact on kernels or a concave which has differenct sizes of holes at different locations along the cylinder. 5. For the head-feeding type thresher, there was a difference in separating loss between the varieties. At the cylinder speed of 600 rpm the separating losses for the Minehikari and the Suweon 264 were 1.2% and 0.6% respectively. The separating loss of the head-feeding type thresher was not affected by the moisture content of paddy while that of the Mini-aged thresher increased with the moisture content. 6. From the analysis of the tailings return , to appeared that the tailings return mechanism didn't function properly because lots of single grains and rubbishes were unnecessarily returned. 7. Adding a vibrating sieve to the head-feeding type thresher could increase the efficiency of separation. Consequently , the tailing return mechanism would function properly since unnecessary return could be educed greatly. 8. The power required for the head-feeding type thresher was not affected by the moisture content of paddy, but the average power increased linearly with the feed rate. The power also increased with the cylinder speed.

  • PDF

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

A Study on Visitor Satisfaction for Bukhansan Dulegil (북한산 둘레길 이용객 만족도에 관한 연구)

  • Cho, Woo-Hyun;Yun, Hui-Jae;Im, Seung-Bin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.60-73
    • /
    • 2011
  • Since Jeju Ollegil opened in September 2007 and attracted the sensation of popularity throughout the country, the interest in 'Walking Trails' has increased, and the central ministries and the local governments composite and assign various 'Walking Trails'. Walking trails are not tours on which people go to see one spot and move to another spot by vehicle, but a long linear journey that leads people to see, to feel and to experience a region's landscape and culture while walking on the trail. 'Walking Trails' are efficient routes to discover and to use a former way and to link the various ecological regions' histories and cultural resources, so it is most important to select a route. Although the routes were selected by considering the various planning factors and giving each route a specified theme, some problems like the inconvenience of visitors caused by lack of facilities have occurred. After designation and construction of the trails, they were not properly evaluated by visitors. Therefore, it is the purpose of this study to suggest a better way to construct the trails by surveying visitor satisfaction and by analyzing the impact of planning a route on visitor satisfaction at Bukhansan Dulegil which was completed. For this study, with a questionnaire based on the literature review to identify the important planning factors for selecting a route, a survey was conducted on visitor satisfaction for each section and their intention to revisit and to recommend that trail. Based on the characteristics of each section that was identified in the field research, the trails were classified into five types and satisfaction of each type and each type was analyzed. In addition, analyzing the impact of planning factors on satisfaction, the impact of satisfaction on revisiting and recommending and visitors' perception of the theme, further improvement for better construction of the trail was presented. Satisfaction of sectors with strong natural elements was higher; 'walking comfort' was the highest planning factor affecting satisfaction. In addition, satisfaction was surveyed to have high influence on revisiting and recommending.

Design Strategies and Processes through the Concept of Resilience (리질리언스 개념을 통해서 본 설계 전략과 과정)

  • Choi, Hyeyoung;Seo, Young-Ai
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.5
    • /
    • pp.44-58
    • /
    • 2018
  • Cities face new challenges not only in natural disasters by climate change but also in social and economic fluctuations. With the existing simple reconstruction method, it is difficult to solve the overall problems that a city or region may face. As a new approach to cope with various changes, the concept of resilience is emerging. Resilience is also one of the themes of recent major urban design projects. Design with the concept of resilience is a new strategy that can deal with various changes of urban space, rather than a temporary trend. The purpose of this paper is to explore the design method by analyzing cases where the concept of resilience is employed. We aim to examine what kind of design strategies are needed for the resilience design and how this design process differ in character, as compared to general design projects. Cases for this study include the "Rebuild by Design" competition held in 2013 and the "Resilient by Design/Bay Area Challenge" competition held in 2017. This paper consists of literature reviews and case studies. The latter is divided into two aspects: content analysis based on the theory of resilience and characteristics of the design process. Cases are analyzed through literature reviews and process characteristics of resilience design in response to the general design process. The main categories for urban resilience used as the framework for analysis include: Urban Infrastructure, Social Dynamics, Economic Dynamics, Health and Wellbeing, Governance Networks, and Planning and Institutions. As a result, the aspects of resilience concepts considered and design strategies undertaken by each team were identified. Each team tried to connect all 6 categories to their design strategies, placing special value on the role of governance, a system that enables collaborative design and project persistency. In terms of the design process, the following characteristics were found: planning the whole project process in the pre-project phase, analyzing predictable socioeconomic risk factors in addition to physical vulnerabilities, aiming for landscape-oriented integrated design, and sustainable implementation strategies with specific operations and budget plans. This paper is meaningful to connect the concept of resilience, which has been discussed in various articles, to design strategy, and to explore the possibility of constructing a practical methodology by deriving the characteristics of the resilience design process. It remains a future task to research design strategies that apply the concept of resilience to various types of urban spaces, in addition to areas that are vulnerable to disasters.

A study for Beating Filter Press Dewatering Technology (열(熱) 필터프레스 기술(技術)을 통한 슬러지 탈수율(脫水率) 향상(向上)을 위한 연구(硏究))

  • Lee, Jung-Eun;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.38-45
    • /
    • 2006
  • The thermal filter press dewatering(TFPD) technology to improve the dewaterability through increasing the inner vapor pressure, lowering the filtration viscosity and forming the porosity easily within cake as applying the heat at the sludge layer was developed in this study. The hot water with temperature of $95^{\circ}C$ and pressure of $1.2kg_f/cm^2$ was supplied to the heating plate equipped between filter plates with plate size of $470{\times}470mm$ and material of polypropylene. Sludge was dewaterd by supplying pressure of $5kg_f/cm^2$ and then by squeezing pressure of $15kg_f/cm^2$. As a results of estimating the characteristics of thermal dewatering to consider the initial water content and organic content to be influenced by a period of water shortage and rainwater, the dewatered cake water content was about 35 wt% and dewatering velocity was $4DSkg/m^2{\cdot}hr$ under the rainwater period, and the dewatered cake water content was about 50 wt% and dewatering velocity was $1.5DSkg/m^2{\cdot}hr$ in the case of sludge of water shortage season. These results was superior to the mechanical dewatering performance with water content of 70wt% and dewatering velocity of $0.9DSkg/m^2{\cdot}hr$. On the base of the results of TFPD, energy consumpted to deal with DS(Dry Solid) of 1kg was estimated by 300 kJ. It was analyzed that the energy consumption of TFPD was decreased about one third with comparison to the dryer system. Dewatering velocity of this technology was faster than the one of mechanical dewatering equipment and it was easier to product low water content cake. Therefore, this technology was recognized that dewaterability was predominant because of the fast of dewatering velocity and production of low water content cake, and also this known as economical efficiency was excellent because of low energy consumption in comparison with dryer.