• 제목/요약/키워드: engineering properties of mortar

검색결과 490건 처리시간 0.024초

Effect of elevated temperatures on properties and color intensities of fly ash mortar

  • Wang, Her-Yung
    • Computers and Concrete
    • /
    • 제5권2호
    • /
    • pp.89-100
    • /
    • 2008
  • This research examines the engineering properties and color intensities of mortar containing different amounts of fly ash (0, 5, 10 and 20%) mixed at different water-to-binder ratios (w/b = 0.23, 0.47 and 0.59) and exposed at different temperatures (T = 25, 100, 200, 400, 600 and $800^{\circ}C$). Results show that there is greater mass loss on ignition with high w/b and higher temperatures. In addition, the color channel image analyzer (Windows software written in Delphi) is utilized to study the relationship between the curing temperature and intensity of three primary colors, red, green and blue (RGB), of the fly ash mortar specimens. The results show that the RGB intensities on the specimen surface increases from that at $25^{\circ}C$. The mortar specimen becomes white with increase in w/b but without the addition of fly ash. Moreover, for mortar specimens with greater content of fly ash, red on the specimen surface has the greatest increase in intensity at elevated temperature. Observation the variations in color on the specimen surface may help estimate the highest elevated temperatures that concrete structures can withstand.

Experimental study of graphene oxide on wollastonite induced cement mortar

  • Sairam, V.;Shanmugapriya, T.;Jain, Chetan;Agrahari, Himanshu Kumar;Malpani, Tanmay
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.479-490
    • /
    • 2021
  • Present research is mainly focused on, microstructural and durability analysis of Graphene Oxide (GO) in Wollastonite (WO) induced cement mortar with silica fume. The study was conducted by evaluating the mechanical properties (compressive and flexural strength), durability properties (water absorption, sorptivity and sulphate resistance) and microstructural analysis by SEM. Cement mortar mix prepared by replacing 10% ordinary portland cement with SF was considered as the control mix. Wollastonite replacement level varied from 0 to 20% by weight of cement. The optimum replacement of wollastonite was found to be 15% and this was followed by four sets of mortar specimens with varying substitution levels of cementitious material with GO at dosage rates of 0.1%, 0.2%, 0.3% and 0.4% by weight. The results indicated that the addition of up to 15%WO and 0.3% GO improves the hydration process and increase the compressive strength and flexural strength of the mortar due to the pore volume reduction, thereby strengthening the mortar mix. The resistance to water penetration and sulphate attack of mortar mixes were generally improved with the dosage of GO in presence of 15% Wollastonite and 10% silica fume content in the mortar mix. Furthermore, FE-SEM test results showed that the WO influences the lattice framework of the cement hydration products increasing the bonding between silica fume particles and cement. The optimum mix containing 0.3% GO with 15% WO replacement exhibited extensive C-S-H formation along with a uniform densified structure indicating that calcium meta-silicate has filled the pores.

The effects of Graphene Oxide flakes on the mechanical properties of cement mortar

  • Kim, Boksun;Taylor, Lawrence;Troy, Andrew;McArthur, Matthew;Ptaszynska, Monika
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.261-267
    • /
    • 2018
  • This paper discusses a study of cement mortar reinforced with Graphene Oxide (GO) flakes carried out at the University of Plymouth. Over 60 specimens were prepared and tested to obtain the tensile, compressive and flexural strengths of cement mortar with/without 0.5% GO flakes by weight of cement. The dispersion of the GO flakes and the effect of the use of polycarboxylate ether superplasticizer (0.2% by weight of cement) on the material strength are discussed. Images of the particle sizes of GO are presented from the transmission electron microscopy analysis. In addition, the images from the field emission scanning electron microscope analysis are also presented to show the difference of the microscopic structure of cement mortar with/without GO. The results of the strength tests are presented. It is shown that the inclusion of the GO flakes in general led to positive results, which suggest that GO improved the tensile, compressive and flexural strengths of cement mortar.

Adhesive Strength in Tension of High Volume PAE-Modified Cement Mortar with High Flowability for Floor Finishing

  • Do, Jeong-Yun;Soh, Yang-Seob
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.739-746
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been carried out in many countries like America, Japan and Germany and so on due to their high performance and good modification effect. PAE of polymer dispersion widely used in situ was employed that the high flowability may be induced in the cement mortar. In order to investigate the modification of cement mortar with high flowability by PAE and fracture mode of adhesive strength properties in tension of that, experimental parameters were set as PAE solid-cement ratio(P/C) and cement: fine aggregate(C:F) and the experiments such as unit weight, flow, consistency change, crack resistance and segregation that inform on the general properties have been done. Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by PAE did grow better as the ratio of PAE solid-cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90 min. after mixing. Adhesive strength in tension increased with continuity during curing period and showed the maximum in case of C:F=1:1 and P/C=20%.

An Experimental Study on Evaluation of Compressive Strength in Cement Mortar Using Averaged Electromagnetic Properties

  • Kwon, Seung-Jun;Maria, Q. Feng;Park, Tae-Won;Na, Ung-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.25-32
    • /
    • 2009
  • A non-destructive testing (NDT) method for evaluating physical properties of concrete including the compressive strength is highly desirable. This paper presents such an NDT method based on measurement of electromagnetic (EM) properties of the material. Experiments are carried out on cement mortar with different water/cement (W/C) ratios. Their EM properties including the conductivity and the dielectric constant are measured at different exposure conditions and curing periods over a wide frequency range of the EM wave. The compressive strength of these specimens is also tested. It is found that both the conductivity and the dielectric constant increase as the W/C ratio decreases and the curing period increases, which lead strength development in the specimens. A linear correlation is observed between the averaged EM properties over the 5 to 20 GHz frequency range and the measured compressive strength, demonstrating the effectiveness of the EM property-based NDT method in evaluating strength of OPC mortar.

망간 도핑 이산화티탄 나노와이어를 혼입한 시멘트 모르타르의 특성 (Properties of Cement Mortar with Manganese Doped Titanium Dioxide Nano-Wires)

  • 이준철;호우야오롱
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.323-324
    • /
    • 2023
  • The properties of cement mortar mixed with manganese-doped titanium dioxide nanowires (TiO2(Mn)-NWs) were investigated in this study. The TiO2(Mn)-NWs were synthesized using solvo-thermal synthesis and electro-spinning techniques. The TiO2(Mn)-NWs at weights of 1%, 2%, and 3% of the cement were respectively mixed into the cement mortar. The results showed that as the amount of TiO2(Mn)-NWs increased, the flow value of the cement mortar was decreased and the setting time of cement mortar was accelerated. Moreover, as the amount of TiO2(Mn)-NWs increased, the compressive strength of cement mortar was increased and the efficiency of acetaldehyde removal was improved.

  • PDF

Development of reference materials for mortar: Determination of the components and relation with mixing ratio

  • Lim, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.381-391
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) for mortar that can simulate the initial flow characteristics with constant quality over a long period. Through the previous research on the development of RMs for cement paste, the combination of limestone, glycerol, and water was used as the basic matrix for developing RMs for mortar in this study. In addition, glass beads of three particle sizes (0.5, 1.0, and 2.0 mm) and ISO standard sand were selected as tentative candidates to derive fine aggregate substitutes. The mixture of glass beads could simulate the initial flow characteristics of mortar, but under the same mixing ratio, replicates showed an unstable tendency to indicate inconsistent values due to the generation of electrostatic properties between materials and equipment. On the other hand, the mixture using ISO standard Sand not only simulates the constant flow characteristics for a long period of time, but also shows stable results with little error in replicates. Therefore, limestone, glycerol, ISO standard sand, and water were finally determined as components that met the required properties of RMs for mortar. The effect of each component on the flow characteristics of RMs was analyzed. It was found that glycerol increased the cohesion between the particles of standard sand, resulting in a constant increase both in the plastic viscosity and yield stress. Both limestone and standard sand had a dominant effect on the yield stress. The relationships between various mortar mixing ratios and the corresponding mixing ratios of RMs were established. In addition, the results of the verification experiment showed that the rheological properties of the RMs obtained through the relationships correlated with various water/cement ratios and the fine aggregate volume fractions of mortar obtained with same manner. In other words, the RMs for mortar developed in this study can be used as standard samples because they can simulate the initial flow characteristics of mortar of various mixing ratios for a long period without any chemical changes.

Wet-mix Shotcreting Application of High Ductile Fiber Reinforced Mortar Designed by Optimizing Mix Proportion

  • 김윤용;김정수;김진근;하기주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.581-584
    • /
    • 2004
  • High ductile fiber reinforced mortar suitable for wet-mix shotcreting (sprayable ductile mortar) 10 the fresh state, while maintaining tensile strain-hardening behavior in the hardened state, has been developed based on micromechanics and workability control. In the development concept of sprayable ductile mortar, micromechanics is adopted to properly select the matrix, fiber, and interface properties to exhibit strain hardening and multiple cracking behaviors in the composites. Within the pre-determined micromechanical constraints, the workability is controlled by optimizing mix proportions. A series of spray tests show the excellent pumpability and sprayability of the sprayable ductile mortar. Subsequent direct tensile tests demonstrate that the tensile performance of sprayed mortar is comparable to that of cast mortar, for the same mix design.

  • PDF

쓰레기 소각재 용융슬래그 미분말을 혼입한 모르타르의 압축강도 특성에 대한 연구 (An Study on Compressive Strength Properties of Mortar with Municipal Solid Waste Incineration Ash Melted Slag Powder)

  • 이용무;김영수
    • 한국건축시공학회지
    • /
    • 제16권1호
    • /
    • pp.53-58
    • /
    • 2016
  • 본 연구는 쓰레기 소각재 용융슬래그 미분말을 혼화재료로 사용하기 위한 연구로 소각재 용융슬래그 미분말을 혼입한 모르타르에 대한 연구를 수행한 것이다. 쓰레기 소각재 용융슬래그 미분말의 혼입율을 10, 20, 30, 40, 50%로 다양하게 한 후 굳지 않은 모르타르의 플로 특성과 재령 3, 7, 14, 28, 56일의 압축강도를 평가하였다. 실험결과 쓰레기 소각재 용융슬래그 미분말의 혼입율이 증가할수록 유동성이 증가하였고, 3일, 7일의 압축강도는 점진적으로 감소하였으나, 재령 28, 56일 압축강도는 증가하는 것을 알 수 있었다.

Flow and Engineering Properties of Fiber Reinforced Hwangtoh Mortars

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Hwang, Hye-Zoo
    • 한국건축시공학회지
    • /
    • 제12권3호
    • /
    • pp.332-339
    • /
    • 2012
  • In this study, six mortar mixes were tested in order to examine the significance and limitations of hydrophilic fiber in terms of its capacity to enhance the tensile resistance of Hwangtoh mortar. Lyocell, polyamide and polyvinyl alcohol (PVA) fibers were selected for the main test parameters. The tensile capacity of mortars tested was evaluated based on the splitting tensile strength and the modulus of fracture, while their ductility was examined using the toughness indices specified in ASTM. Test results showed that the addition of lyocell and PVA fibers had little influence on the flow of the Hwangtoh mortars. To enhance the tensile capacity and toughness index of Hwangtoh mortar, it is proposed that fiber spacing above 0.0003 is required, regardless of the type of fiber.