• 제목/요약/키워드: engine torque control

검색결과 187건 처리시간 0.023초

기어 래틀 저감을 위한 시스템 파라미터 연구 (A Study on the System Parameters to Reduce the Idle Gear Rattle)

  • 안병민;장일도;최은오;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.88-96
    • /
    • 1998
  • The rattle noise is the most significant in many kinds of manual gearbox nioses, which is generated at the idle stage of the engine operation. The main torsional vibrat- ion source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration. Many researchers reported the clutch torsional characteristic optimization method to reduce the idle gear rattle but only few of them give sufficient consideration to the system parameters like gear backlash, drag torque, system inertia, inertia distribution, engine torque fluctuation, idle engine rotation speed, and accessory load. In this paper, influence rate of system parameters on the gear rattle is presented and counterplans like backlash reduction, drag torque increase, inertia addition, inertia distribution modification and engine torque characteristic control are suggested.

  • PDF

LPG 및 Gasoline 겸용 차량의 엔진 점화시기 변환 제어시스템 개발 (The Development of the Ignition Spark Timing Conversion System for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;양인권;김재국;김성준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.117-123
    • /
    • 2003
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the effective performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its lower flame speed, due to engine torque drop. This study aims to develop the control system for ignition spark timing conversion which is composed of hardwares and control algorithm for gasoline/LPG engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. The advance of ignition timing is achieved by change of the ignition dwell time of coil igniter. The engine torque and F/E(Fuel-Economy) in LPG fuel mode are measured to evaluate the difference of engine performance between before and alter changing ignition spark timings. The engine torque and F/E are increased respectively, which proves the developed control system is effective so much for gasoline and LPG bi-fuel engine.

Optimal Fuzzy Control of Parallel Hybrid Electric Vehicles

  • Farrokhi, M.;Mohebbi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.910-914
    • /
    • 2005
  • In this paper an optimal method based on fuzzy logic for controlling parallel hybrid electric vehicles is presented. In parallel hybrid electric vehicles the required torque for deriving and operating the on-board accessories is generated by a combination of internal-combustion engine and an electric motor. The powersharing between the internal combustion engine and the electric motor is the key point for efficient driving. This is a highly nonlinear and time varying plant and its control strategy will be implemented with the use of fuzzy logic controller. The fuzzy logic controller will be designed based on the state of charge of batteries and the desired torque for driving. The output of controller controls the throttle of the combustion engine. The main contribution of this paper is the development of an optimal control based on fuzzy logic, which maximizes the output torque of the vehicle while minimizing fuel consumed by the combustion engine.

  • PDF

차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구 (A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode)

  • 최윤준;송해박;이종화;조한승;조남효
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.

스로틀 전자제어 방식 M/T차량의 가/감속 시 운전성 향상에 관한 연구 (A Study of the Driveability Improvement on the Electronic Throttle Control M/T Vehicle at Tip-in/out)

  • 박경석;이종화;박진일
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.151-157
    • /
    • 2006
  • The passenger car drivers want in general to feel good driveability, but they sometimes feel uncomfortable by shock and jerk phenomena when they push or release acceleration pedal with clutch on state. In this paper, the shock and jerk characteristics are studied on the vehicles controlled by the throttle-by-wire system. Experiments and simulations were carried out on two vehicles which show different control characteristics. The engine torque control characteristics was analyzed by measuring cylinder pressure. Various specification factors of the vehicles and the torque control logic of the engines were simulated through experimental data basis. The result shows the spring effect of the trans-axle in the drive-train is one of the most important factors of the shock-jerk phenomena and the engine torque control method is also responsible for the reducing the shock-jerk amplitude. In this paper a new control logic of the engine torque is suggested for the better driveablility on the tip-in/out event.

디젤기관의 속도제어성능 개선에 관한 연구 (A Study on the Improvement of the Speed Control Performance in a Diesel Engine)

  • 김병덕;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권5호
    • /
    • pp.33-43
    • /
    • 1993
  • Recent marine propulsion diesel engines tend to become slower in speed and longer in stroke for the higher engine efficiency, and in these long stroke and slow speed engines the digital governors are highly recommended to be used. But, in the present digital governors only the feedback of the engine rpm-signal is used for the engine speed control and it does not work so effectively when the load variation is large. In this paper, a new method is proposed to improve the speed control performance in a diesel engine, by adding the torque feedback loop to the present digital governor which uses the rpm feedback PID controller only. And also a method is proposed to adjust the parameters of the PID controller optimally.

  • PDF

엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구 (An Experimental Study upon Modeling and Control of Coupled Engine and Generator System)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

주행거리 연장형 청소용 전기자동차에 장착된 상용 디젤엔진의 토크제어를 위한 통신 방안 (Communication Method for Torque Control of Commercial Diesel Engine in Range-Extended Electric Trash Truck)

  • 박용국
    • 한국산학기술학회논문지
    • /
    • 제19권7호
    • /
    • pp.1-8
    • /
    • 2018
  • 본 논문은 주행거리 연장형 전기자동차에서 발전량을 결정하는 차량 제어기와 이를 수행하는 엔진 제어기 간 토크 명령을 전달하기 위한 새로운 통신방법을 설명한 것이다. 일반적으로 자동차는 CAN 통신방식을 사용하지만, 이 경우 기존 엔진 제어기의 하드웨어 및 소프프웨어를 수정해야만 한다. 이러한 이유로 중소 자동차 개조업체는 발전용 엔진이 탑재된 주행거리 연장형 전기자동차에 대한 개발 및 개조 작업 시 CAN통신방식의 적용이 쉽지 않다. 따라서 본 연구과정에서는 기존의 양산용 엔진 제어기를 주행거리 연장형 전기자동차에 적용하기 위한 핀-핀 통신방안를 제시하였다. 핀-핀 통신방안은 기존 양산용 엔진 제어기내에 탑재된 운전자요구토크 제어 맵을 엔진의 목표속도와 목표토크에 따른 가상 엑셀 열림량으로 변환하는 과정과 이를 기존 양산 엔진제어기가 인식 할 수 있도록 해당 엑셀페달 전압신호로 변환하는 과정으로 구성된다. 가상 엑셀 열림량은 오프라인 환경에서 역 변환 과정을 통하여 차량 최상위제어기에 제어 맵 형태로 탑재되고, 엔진 발전요구량과 엔진 최적 운전점 알고리즘을 통하여 결정된다. 이렇게 결정된 가상엑셀 열림량은 DA신호 변환기를 통하여 기존 엔진제어기가 인식할 수 있는 전압신호로 최종적으로 변환된다. 엔진토크 전달을 위한 이러한 알고리즘과 신호변환 회로는 차량제어기(VCU)에 탑재되어 엔진목표토크에 따른 가상엑셀페달 열림량 변환과정과 신호변환기를 이용한 가상 엑셀페달 전압신호에 대한 통신시험을 실시하여 이러한 통신방식의 실현 가능성을 입증하였다.

퍼지논리제어기를 이용한 차량의 궤적제어 (Vehicle Trajectory Control using Fuzzy Logic Controller)

  • 이승종;조현욱
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.