• Title/Summary/Keyword: engine thrust

Search Result 459, Processing Time 0.022 seconds

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

Methane Engine Combustion Test Facility Construction and Preliminary Tests (메탄엔진 연소시험설비 구축 및 예비 시험들)

  • Kang, Cheolwoong;Hwang, Donghyun;Ahn, Jonghyeon;Lee, Junseo;Lee, Dain;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.89-100
    • /
    • 2021
  • This paper deals with the construction of a combustion test facility and preliminary tests for hot-firing tests of a methane engine. First, the combustion test facility for a 1 kN-class thrust chamber using liquid oxygen/gas methane as propellants was designed and built. Before hot-firing tests, the cold-flow tests of each propellant line and the ignition tests of torch igniter/afterburner were performed to verify propellant supply stability of the combustion test facility, operation of the control and measurement system, and successful ignition. Finally, a preliminary hot-firing test was conducted to measure the combustion efficiency, heat flux, and combustion stability of a thrust chamber prototype. The constructed combustion test facility will be helpfully used for basic research and development of methane engine thrust chambers.

The Axial Vibration of Internal Combustion Engine Crankshaft (Part II. Resonant Amplitudes Calculation of the Crankshaft Axial Vibration) (내연기관 크랭크축계 종진동에 관한 연구 (제2보 : 크랭크축계 종진동의 공진진폭계산))

  • 김영주;고장권;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.69-91
    • /
    • 1982
  • The major factors which affect the crankshaft axial vibration are such items as the axial stiffness and mass of crankshaft, the thrust block stiffness, the propeller's entrained water and the exciting and damping forces of engine, propeller and shafting. Among above mentioned items, the axial stiffness and mass of crankshaft, thrust block stiffness and propeller's entrained water were treated in detail in part I, and so in this paper, the rest of above items will be studied. The exciting forces of crankshaft axial vibration are generated mainly from the gas explosion pressure of cylinder, the thrust fluctuation of propeller, and sometimes the torsional vibration of crankshaft induces the crankshaft axial vibration. As for the propeller thrust fluctuation, its harmonic components can be fairly exactly calculated from the experimental results of propeller in the towing tank, but as the calculation process is rather tedious and laborious, the empirical values are ordinarily used. On the other hand, the table of harmonic components of gas pressure has been already published by major slow speed diesel engine makers, but the axial thrust conversion factor of radial force is not unknown yet, and as its estimated value is unreliable, the axial vibration force of gas pressure is uncertain. As the calculation of damping force is very complicated and it includes some uncertain factors, the thoretically estimated amplitudes of axial vibration are much more incorrect in comparison with those of torsional vibrations. Authors have paid special attentions to deriving the theoretical calculation formula of axial conversion factor of radial force and damping force of crankshaft axial vibration and developed a computer program to calculate resonance amplitudes and additional stresses of crankshaft axial vibrations. Also, to check the reliability of the developed computer program, the axial vibrations of three ships' propulsion shaftings were analyzed and their results were compared with those of measured values and makers' results.

  • PDF

Step-by-step Tests for Continuous Thrust Control Hot-firing Test (연속 추력제어 연소시험을 위한 단계별 시험들)

  • Cheolwoong Kang;Shinwoo Lee;Sunwoo Han;Kangyeong Lee ;Hadong Jung;Dongwoo Choi;Kyubok Ahn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.58-67
    • /
    • 2023
  • Results of dry-run tests, cold-flow tests, and hot-firing tests performed to throttle a methane engine uni-element thrust chamber are covered in the paper. After installing flow control valves on the oxidizer and fuel supply lines of the methane engine combustion test facility, a number of dry-run tests were repeated so that the valves could reach set strokes quickly and stably. Then, cold-flow tests using liquid nitrogen and gaseous nitrogen were conducted to confirm the stable supply of the simulated propellants according to the valve control. Finally, using liquid oxygen and gaseous methane, hot-firing tests for fixed and continuous thrust control of 50% to 10% of the nominal thrust were successfully performed.

Study on the Control of the Axial Thrust of a Pump for Liquid Rocket Engine Turbopumps (액체로켓엔진 터보펌프용 펌프의 축추력 조절에 관한 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • The magnitude of the axial thrust acting on pump bearings has a great influence on the operational reliability and service life of a pump for turbopumps. In the present study, radial vanes are introduced to the pump casing to control the axial thrust by changing the cavity pressure between the impeller and the casing. To investigate the effect of the vanes on the axial thrust of the pump, experimental and computational studies were performed with and without the vanes. It is shown that the vanes reduce the cavity pressure by preventing the flow from rotating with the impeller. Experimental and computational results show similar trend for the axial thrust difference between two cases with and without the vanes. The results show that the cavity vanes are very effective in controlling the magnitude of the axial thrust.

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF

Current Status of Development Test of 75 tonf Engine System for KSLV-II (한국형발사체 75톤급 엔진 개발 시험 현황)

  • Kim, SeungHan;Kim, SeungRyong;Kim, SungHyuk;Kim, ChaeHyung;Seo, DaeBan;Woo, SeongPil;Yu, ByungIl;So, YoonSeok;Lee, KwangJin;Lee, SeungJae;Lee, JungHo;Lim, JiHyuk;Jeon, JunSoo;Cho, NamKyung;Hwang, ChangHwan;Park, Jea-Young;Han, YeongMin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.99-103
    • /
    • 2017
  • As a development test of the 75-tonf LOx/Kerosene liquid rocket engine for KSLV-II first Stage Engine, hot firing test of 75-tonf engine are performed. The current status of development test on first stage 75-tonf engine system including combustion chamber, turbopump, gas generator, propellant supply system are presented. During the 75tonf engine test campaign, the development of startup sequence of LOx-Kerosene engine system, engine startup using pyrostarter, ignition of gas generator, steady operation and engine shutdown is successfully performed. As a passenger test during engine hot firing tests, Thrust Vector Control system (TVC) of the engine are also evaluated during engine hot firing test. The results of hot firing test of 75-tonf thrust engine system will be used for the design confirmation and performance evaluation of 75 tonf engine system for KSLV-II first Stage.

  • PDF

A System Analysis of the Turbopump Type Liquid Rocket Engine (터보펌프식 액체로켓엔진의 시스템 해석)

  • Lee, Jin-Kun;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.109-115
    • /
    • 2004
  • A 1-D system design program has been developed for the preliminary design of the turbopump system in liquid rocket engines, which use LOx and kerosene as propellants. Gasgenerator cycle and staged combustion cycle were considered as turbopump type liquid rocket engine systems. In the system analysis, mass flow balance, thrust, specific impulse, mixture ratios, turbopump power, and turbine expansion ratio of engine system were analyzed. Results show that most of the parameters agree well with real engine parameters except gasgenerator. Therefore, the l-D system design program developed in this study can be used to derive the preliminary design parameters of a turbopump with any thrust level liquid rocket engine.

Ground Firing Test Facility of Hybrid Rocket Engine (하이브리드로켓엔진 지상연소시험 설비)

  • Kim, Soo-Jong;Kim, Gi-Hun;Cho, Jung-Tae;Cho, Min-Kyoung;Do, Gyu-Sung;So, Jung-Soo;Heo, Jun-Young;Lee, Jung-Pyo;Park, Su-Hayng;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.251-254
    • /
    • 2008
  • Ground firing test facility and test field for firing test of hybrid rocket engine were constructed. Ground firing test facility were composed of hybrid rocket engine, thrust stand, oxidizer storage/supply system, control system and data acquisition system. Firing tests of thrust 50 kgf class were conducted. Stable performance data was obtained and operational reliability of ground firing test facility were found.

  • PDF

Determination of Thrust Distribution in the Supersonic Combustor (초음속 연소기 내부의 추력 분포 계산)

  • Heo, Hwan Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.69-75
    • /
    • 2003
  • The ideal thrust function is used to determine the local thrust of supersonic combustor. Method of thrust determination from measured pressures are applied to the Mach 2.5 model supersonic combustor. In this application, measured pressures from the experiments in the University of Michigan are used to determine the local thrust of supersonic combustor. Marginal results of local thrust are obtained and discussed. Combustion and wedge affect thrust distributions in the upstream region significantly. The thrust determination from pressure measurements can be a simple, feasible and applicable method, especially when thrust stand is not available.