• Title/Summary/Keyword: engine shafting

Search Result 86, Processing Time 0.026 seconds

An Experimental Study of T-mode Vibration on the Diesel Power Plant (디젤 발전소의 T-mode 진동에 관한 실험적 고찰)

  • Lee, D.C.;Nam, T.K.;Bae, Y.C.;Kim, Y.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.411-416
    • /
    • 2005
  • Nowadays, diesel power plant using low speed two stroke diesel engine is widely used in islands and restricted areas. Considerations were given to its benefit of high thermal efficiency, reliability and durability compared to the other prime movers. However, various types of engine vibration affect neighboring buildings to their structural vibration. For this, diesel power plant are held liable for the troubles caused by these vibration. These are mainly due to the X- and H-type engine vibrations which we excited by the X- and H- guide force moment. Authors have identified a structural vibration of new pattern called ‘T-mode vibration’ due to the torsional vibration of shafting system. In this paper, T-mode vibration is analyzed through an experimental method based on the global vibration measurement.

  • PDF

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting(2nd Report: Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진공에 관한 연구(제2보 : 강제 감쇠 연성진동해석))

  • 전효중;이돈출;김의간;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.563-572
    • /
    • 2001
  • With the results of calculation for natural frequencies the reponses of forced coupled vibration of propulsion shafting system were investigated by the modal analysis method. For the forced vibration response analysis, the axial exciting forces, the axial damper/detuner, propeller exciting forces and damping coefficients were extensively considered. As the conclusion of this study, some items are cleared as follows.-The torsional vibration amplitudes are not influenced by the radial excitation forces of the crank shaft. -The axial vibration amplitudes are influenced by the tangential exciting forces as well as the radial exciting forces of the crank shaft. The increase of the amplitudes is observed in the speed range at the neighbourhood of any torsional critical speed. 1The closer the torsional and axial critical speed. the larger coupling effect becomes. -The axial exciting force of propeller is relatively strong comparing with axial exciting forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, the following conclusions are obtained. -Torsional vibration calculation with the classical one dimensional model is still valid. -The influence of torsional excitation at each crank upon the axial vibration is improtant. especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimensional model is inaccurate in most of cases.

  • PDF

Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments (원형 고무 세그먼트를 갖는 탄성 커플링의 동특성과 적응성)

  • Lee, D.C.;Kim, J.K.;Nam, T.K.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.90-95
    • /
    • 2008
  • Medium and high speed marine diesel engines have been widely used as prime mover in small car ferries and fishing vessels with reduction gear. These propulsion shafting system should be installed and matched the elastic coupling between engine and reduction gear to isolate the vibratory torque. In this paper, the elastic dynamic characteristics of coupling with rubber type circular segments is confirmed by the theoretical analysis using the FEM and the hydraulic exciting test at shop. And its adaptation is investigated in the torsional vibration test in factory shop.

  • PDF

Torsional Vibration Analysis in Large Two-Stroke Diesel Engines for Stationary Power Plants. (발전용 대형 2행정 디젤 엔진의 비틈진동 해석)

  • Park, Jong-Po;Park, Hui-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2529-2534
    • /
    • 2000
  • Torsional vibration analysis in a large two -stroke low speed diesel engine and generator system for stationary power plants is performed to verify that the vibration characteristics of shafting system meet design requirements. Our own developed S/W is employed for the analysis, whose results are evaluated comparing with measurements. Vibration analysis results of the system are presented according to the change of loading(unload, 100%load, 110% load) and operating(mis-firing, uneven firing) conditions of the stationary power plants.

Control of Torsional Vibration using Uneven Crank Angels on the Shafting for Diesel Power Plant (부등간격 크랭크 배치각에 의한 디젤 발전소 축계의 비틀림진동 제어)

  • 이돈출;유정대;김정렬
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.655-661
    • /
    • 2000
  • Diesel power plant can be used as a power supplier for the isolated place where consumption of electric power is variable. The reason is that mobility and durability of diesel engine is superior to those of other thermal engines. However, there are some disadvantages for using these diesel engines such as bigger vibratory excitation force comparing to the others, which result from high combustion pressure of cylinders and inertia force of piston reciprocating masses. In this paper, control and optimization of torsional vibration of 12K90MC-S engine for diesel power plant using uneven crank angles is identified by theoretical analysis and vibration measurement.

  • PDF

Design and Its Influence Evaluation of Gear System Considering Vibratory Torque (진동토크를 고려한 기어시스템의 설계 및 영향 평가)

  • 이돈출;김지근;김태언;김상환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.316-323
    • /
    • 2003
  • The gear system is commonly applied in the marine propulsion shafting system using the diesel engine with the power take off/in system and it also is necessary to reduce propeller revolution increasing the propulsion efficiency. The diesel engine has the advantage more than other thermal engines in high thermal efficiency and mobility. But the large vibratory torque which induced by higher combustion pressure is transmitted to these gears. In this paper, the surface durability and bending stress of gear system considering vibratory and transient torque is evaluated by ISO and AGMA regulation. And the influence of these in gear design is investigated with the theoretical analysis and onboard measurement result of torsional vibration.

  • PDF

A Study on the Axial Vibration Damper of the Marine Diesel Engine Shafting (선용(船用)디이젤기관축계(機關軸系)의 종진동감쇠장치(縱振動減衰裝置)에 관(關)하여)

  • Hio-Jung,Jeon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.2
    • /
    • pp.61-70
    • /
    • 1970
  • Since there has been no analytical method to calculate principal dimensions of the axial vibration damper of marine diesel engine shaftings in design state, it has often happened to install the axial vibration damper after the ship's trial trip. In this paper a method to calculate the coefficient of equivalent damping of the axial vibration damper is introduced and with this value one can calculate fairy accurate vibrating amplitudes of the crankshaft that is fitted with an axial vibration damper, by using author's matrix methods.[1][2][3][4] A comparison of the calculated amplitudes with measured ones is shown and its result is fairy good, except values of the case where the damper nozzle is almost closed.

  • PDF

A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines (저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구)

  • Lee, D.C.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF

A Study on the Torsional Vibration of propulsion Shafting System with Controllable Pitch Propeller (가변익 프로펠러를 갖는 추진축계의 비틀림진동에 관한 연구)

  • 이돈출
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.626-634
    • /
    • 1998
  • Controllable pitch propeller(CPP) is usually adopted for easy and effective engine controls of a ship in a port. Unfortunately the torsional vibration may occur by a certain variation of engine torque and the major resonance peak may exist within the maximum continuous rating(MCR) In these cases an additional stress concentration on the oil passages such as longitudinal slots notches and circular holes of an oil distributor shaft(ODS) occurs by the torsional vibration of the CPP shaft. In this paper an analysis for the fatigue limit of an ODS system of the 5S70MC engine in a crude oil carrier is done by applying FEM and empirical formulas. Furthermore the additional stress on the ODS is investigated by analyzing the torsional vibration of the shaft system and a control method in which a tuning damper is adopted is introduced in the case of the additional stress exceeds the fatigue limit. The validity of analysis method is verified by comparing the results acquired by an actual measurement of the vibratory torque for the above ODS

  • PDF

Ship Vibration Control Utilizing the Phase Difference Identification of Two Excitation Components with the Same Frequency Generated by Diesel Engine and Propeller (동일 주파수 성분의 디젤엔진과 프로펠러 기진력 위상차 규명을 이용한 선박 진동 제어)

  • Seong, Hyemin;Kim, Kisun;Joo, Wonho;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.160-167
    • /
    • 2020
  • A two-stroke diesel engine and a propeller normally adopted in large merchant ships are regarded as major ship vibration sources. They are directly connected and generate various excitation components proportional to the rotating speed of diesel engine. Among the components, the magnitude of two excitation components with the same frequency generated by both engine and propeller can be compensated by the adjustment of their phase difference. It can be done by the optimization of propeller assembly angle but requires a number of burdensome trials to find the optimal angle. In this paper, the efficient estimation method to determine optimal propeller assembly angle is proposed. Its application requires the axial vibration measurement in sea trial and the numerical vibration analysis for propulsion shafting which can be substituted by additional vibration measurement after one-trial modification of propeller assembly angle. In order to verify the validity of the proposed method, the phase difference between two fifth order excitation components generated by both diesel engine and propeller of a real ship is calculated by the finite element analysis and its result is indirectly validated by the comparison of axial vibration responses at intermediate shaft obtained by the numerical analysis and the measurement in sea trial. Finally, it is numerically confirmed that axial vibration response at intermediate shaft at a resonant speed can be decreased more than 87 % if the optimal propeller assembly angle determined by the proposed method is applied.