• Title/Summary/Keyword: engine performance

Search Result 3,690, Processing Time 0.034 seconds

Development of IMEP Estimation and Control Algorithm Using In-Cylinder Difference Pressure for Passenger Diesel Engines (승용 디젤 엔진의 실린더 차이 압력을 이용한 IMEP 추정 및 제어 알고리즘 개발)

  • Chung, Jae-Sung;Oh, Seung-Suk;Park, In-Seok;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.915-921
    • /
    • 2012
  • In this study, we propose a new method for estimating the IMEP using difference pressure, which is the pressure difference between the cylinder pressure and the motoring pressure. The estimated IMEP, denoted as $IMEP_{diff}$, optimizes the theoretical IMEP calculation range based on the fact that the difference pressure exists between the start and the end of combustion. $IMEP_{diff}$ is verified to have a high linear correlation with IMEP with $R^2$ of 0.9955. The proposed method can estimate the IMEP with 21% of the cylinder pressure data and 31% of the calculation effort compared to the theoretical IMEP calculation method, and therefore, it has great potential for real-time implementations. The estimation and control performance of $IMEP_{diff}$ is validated by engine experiments, and by controlling $IMEP_{diff}$, the torque variation between the cylinders was reduced.

The Experimental Study on the Correlation of the Interior Noise of a Driving Vehicle with Lateral Dynamic Stiffness of the Wheel (주행 중 실내소음과 Wheel의 Lateral Dynamic Stiffness와의 상관관계에 대한 시험적 연구)

  • Kim, Byung-Jin;Sa, Jung-Hwan;Park, Jin-Sung;Park, Hyun-Woo;Cho, Seong-Keun;Jeong, Heon Sul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • Nowadays, among several reasons for customers to choose their own cars, NVH performance plays much important role. The concern for the car interior noise is increasing recently, because electric cars and hybrid cars generate less engine noise which was the main noise of traditional cars. According to oversea references, high Lateral Dynamic Stiffness (LDS) of vehicle wheels is described to reduce Structure Bone Noise (SBN) which is being generated while driving cars. However availablet test standards and test results are not enough, in this study the interior noise has been measured after attaching a same tyre to several wheels which has different Lateral Dynamic Stiffness. The test has verified that the interior noise differs depending on Lateral Dynamic Stiffness of wheels. As to this, the reduction of the interior noise can be possible with the optimal design of the wheel.

Pulse-mode Response Characteristics of a Small LRE for the Precise 3-axes Control of Flight Attitude in SLV (우주발사체의 비행자세 3축 정밀제어를 위한 소형 액체로켓엔진의 펄스모드 응답특성)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo;Bae, Dae Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A liquid-monopropellant hydrazine thruster has several outstanding advantages such as relatively-simple structure, long/stable propellant storability, clean exhaust products, and so on. Therefore hydrazine thruster has such a wide application as orbit and attitude control system (ACS) for space vehicles. A hydrazine thruster with the medium-level thrust to be used in the ACS of space launch vehicles (SLV) has been developed, and its ground firing test result is presented in terms of thrust, impulse bit, temperature, and chamber pressure. It is verified through the performance test that the response and repeatability of thrust are very excellent, and the thrust efficiencies compared to its ideal requirement are larger than 93%.

Flow Characteristics in the Downstream Region of a Butterfly Valve with Various Disk Opening Angle (디스크 회전각에 따른 버터플라이 밸브 하류에서의 유동특성)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.267-272
    • /
    • 2006
  • Butterfly valves have been used for shut-off and throttling-control application in many industrial fields. Recently, they are frequently used for cooling water, oil system and ballast piping system of many larger vessels. They are especially suited for flow throttling control of heat exchangers in engine room. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics of butterfly valve inserted within circular pipe. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal systematic performance of the butterfly valve, wall pressure was measured at 6 points along the pipe by digital manometer. As the valve position moves to the closed side, flow separation increases and persists its tendency downstream until smoothly uniform flow developed. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 60 degrees.

  • PDF

LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection (분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성)

  • Jung, Jinyoung;Oh, Heechang;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

Development of Eire-lighting and Rescue Robot for Outdoor Environment using Target Oriented Design Methodology (목표지향설계 개념을 이용한 실외화재진압 및 인명구조 로봇의 개발)

  • Kim, Moon-June;Maolin, Jin;Lee, Jin-Oh;Chang, Pyung-Hun;Kim, Jong-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.86-92
    • /
    • 2007
  • This paper presents the development of fire-fighting and rescue robot for Outdoor Environment. In the procedure of this development, we follow Target Oriented Design (TOD) which is recognized as the systematic methodology to design a system by specifying the target clearly. For some real fire fighting tasks (e.g. tasks in shopping street and a market), narrow road make it difficult for existing fire engine to access the firing place. On the other hand, for dangerous tasks (e.g. gasoline station and a storehouse) the explosive materials make it impossible for fire-fighters to access the firing place. Moreover, the smoke and the high-temperature caused by fire make fire fighting difficult. In this situation, the solution is to develop the fire-fighting and rescue robot. TOD is performed firstly by analyzing the environment properties of fro place and the demanded tasks and the fire-fighting and rescue robot is manufactured. For safety, the fire fighting robot should be controlled by remote operation to keep the operator away from the fire, and the control system is divided into three parts: the robot controllers, controller for remote operating device and wireless communication system. We have selected and developed appropriate hardware and software for each part of control system with considering TOD. As a result, the fire-fighting robot functions correctly and the performance and usefulness of our control architecture is validated by successfully performing some fire-fighting tasks.

Emission Evaluation of Emulsion Fuel Prepared from Bunker C Oil (벙커 C유를 사용한 에멀젼 연료유의 배기가스 특성)

  • Lim, HeungKyoon;Lee, MyungJin;Chi, Gyeong-Yup;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.186-192
    • /
    • 2017
  • In this study, water in oil (W/O) emulsion fuel was prepared with surfactant mixture of OIMS90 and NP12 by varying ratio of water to bunker-C oil, surfactant concentration and composition, emulsification time, stirring intensity, temperature and mixing time. Diesel engine performance and exhaust emissions were measured and analyzed with prepared emulsified fuel and compared with those measured using bunker Coil. The results indicated that bunker C emulsion fuel stabilized by surfactant mixture of OIMS90 and NP12 is efficient in reducing emissions of particulate matter, $NO_2$, CO, $CO_2$ and $SO_2$. The biggest reduction in exhaust emission was achieved by using emulsion fuel prepared by OIMS90/NP12 = 4 : 6, 500 ppm of total surfactant concentration and 10% water content at $80^{\circ}C$. Boiler efficiency test measured with emulsion fuel showed excellent energy efficiency compared with bunker C oil.

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Big data distributed processing system using RHadoop (RHadoop을 이용한 빅데이터 분산처리 시스템)

  • Shin, Ji Eun;Jung, Byung Ho;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1155-1166
    • /
    • 2015
  • It is almost impossible to store or analyze big data increasing exponentially with traditional technologies, so Hadoop is a new technology to make that possible. In recent R is using as an engine for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with various data sizes of actual data and simulated data. Experimental results showed our RHadoop system was faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and biglm packages available on bigmemory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Design and Implementation of Real-time High Performance Face Detection Engine (고성능 실시간 얼굴 검출 엔진의 설계 및 구현)

  • Han, Dong-Il;Cho, Hyun-Jong;Choi, Jong-Ho;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.33-44
    • /
    • 2010
  • This paper propose the structure of real-time face detection hardware architecture for robot vision processing applications. The proposed architecture is robust against illumination changes and operates at no less than 60 frames per second. It uses Modified Census Transform to obtain face characteristics robust against illumination changes. And the AdaBoost algorithm is adopted to learn and generate the characteristics of the face data, and finally detected the face using this data. This paper describes the face detection hardware structure composed of Memory Interface, Image Scaler, MCT Generator, Candidate Detector, Confidence Comparator, Position Resizer, Data Grouper, and Detected Result Display, and verification Result of Hardware Implementation with using Virtex5 LX330 FPGA of Xilinx. Verification result with using the images from a camera showed that maximum 32 faces per one frame can be detected at the speed of maximum 149 frame per second.