• 제목/요약/키워드: engine performance

검색결과 3,705건 처리시간 0.027초

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon;Kwak, Dong-Kurl
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.104-114
    • /
    • 2019
  • Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

Numerical Study to Evaluate Course-Keeping Ability in Regular Waves Using Weather Vaning Simulation

  • Kim, In-Tae;Kim, Sang-Hyun
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.13-23
    • /
    • 2021
  • Since the introduction of the mandatory energy efficiency design index (EEDI), several studies have been conducted on the maneuverability of waves owing to the decrease in engine power. However, most studies have used the mean wave force during a single cycle to evaluate maneuverability and investigated the turning performance. In this study, we calculated the external force in accordance with the angle of incidence of the wave width and wavelengths encountered by KVLCC2 (KRISO very large crude-oil carrier) operating at low speeds in regular waves using computational fluid dynamics (CFD). We compare the model test results with those published in other papers. Based on the external force calculated using CFD, an external force that varies according to the phase of the wave that meets the hull was derived, and based on the derived external force and MMG control simulation, a maneuvering simulation model was constructed. Using this method, a weather vaning simulation was performed in regular waves to evaluate the course-keeping ability of KVLCC2 in waves. The results confirmed that there was a difference in the operating trajectory according to the wavelength and phase of the waves encountered.

신뢰성 기반 한국군 차기 상륙돌격장갑차 발전방향 (Development Direction of Reliability-based ROK Amphibious Assault Vehicles)

  • 백일호;봉주성;허장욱
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.14-22
    • /
    • 2021
  • A plan for the development of reliability-based ROK amphibious assault vehicles is proposed. By analyzing the development case of the U.S. EFV, considerations for the successful development of the next-generation Korea Forces amphibious assault vehicle are presented. If the vehicle reliability can be improved to the level of the fourth highest priority electric unit for power units, suspensions, decelerators, and body groups, which have the highest priority among fault frequency items, a system level MTBF of 36.4%↑ can be achieved, and the operational availability can be increased by 3.5%↑. The next-generation amphibious assault vehicles must fulfill certain operating and performance requirements, the underlying systems must be built, and sequencing of the hybrid engine and the modular concept should be considered. Along with big-data- and machine-learning-based failure prediction, machine maintenance based on augmented reality/virtual reality and remote maintenance should be used to improve the ability to maintain combat readiness and reduce lifecycle costs.

침입탐지시스템에서 포트 스캔 탐지 개선 및 공격 탐지와 연계한 알고리즘 설계 및 구현 (Design and implementation of port scan detection improvement and algorithm connected with attack detection in IDS)

  • 박성철;고한석
    • 정보보호학회논문지
    • /
    • 제16권3호
    • /
    • pp.65-76
    • /
    • 2006
  • 본 논문에서는 침입탐지시스템의 탐지 기법인 포트스캔 탐지에 대한 개선 및 포트스캔 탐지 결과와 연계하여 실질적인 공격 탐지 부분인 오남용(Misuse) 탐지 방법의 네트워크 기반 침입탐지시스템에 대한 탐지 능력을 극대화하는 방법에 대해 연구하였다. 또한 침입탐지시스템에서 개선된 포트스캔 탐지를 위해 전처리기인 포트스캔 탐지에 대한 일반적인 정책설정의 문제점과 오남용 탐지 엔진의 false-positive를 최소화하고 포트스캔 탐지와 오남용 탐지의 수행 성능을 높이기 위한 알고리즘을 연구하였다.

IPsec System에서 IKEv2 프로토콜 엔진의 구현 및 성능 평가 (An Implementation and Performance Evaluation of IPsec System engaged IKEv2 Protocol Engine)

  • 김성찬;천준호;전문석
    • 정보보호학회논문지
    • /
    • 제16권5호
    • /
    • pp.35-46
    • /
    • 2006
  • 기존의 보안 시스템에서 키 교환에 사용되어 왔던 인터넷 키 교환 프로토콜은 확장성과 속도, 효율성 그리고 안정성에 문제가 있다는 지적을 받아 왔다. 본 연구에서는 이러한 문제점을 해결하고자 했으며, 새로 구현한 인터넷 키 교환 프로토콜을 IPsec에 연동되는 테스트베드에 탑재하여 성능평가를 하였다. 네트워크가 점점 확장되어 가는 상황에서 기존의 인터넷 키 교환 프로토콜은 네트워크의 확장성에 한계가 있기 때문에 RFC에서 제안하는 표준에 따라서 구현하였으며 키 교환 및 인증 과정에서 지적된 복잡성과 속도 문제를 해결하였다. 복잡한 메시지 교환 단계를 줄여서 속도를 향상시켰고, 재협상 시 기존 상태 값들을 재활용함으로써 효율성을 증가 시켰다.

Determinants Affecting Profitability of Firms: A Study of Oil and Gas Industry in Vietnam

  • BUI, Men Thi;NGUYEN, Hieu Minh
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.599-608
    • /
    • 2021
  • The oil and gas industry is widely known as a vital engine of Vietnam development, stimulating researchers to examine the association of various factors with this industry. The aim of this study is to identify the relationship between different variables affecting profitability of the firms in the oil and gas sector in Vietnam. The total of 203 samples were collected from 29 companies listed on Vietnam Stock Market during a 6-year period from 2012 to 2018. Informed by prior research, this investigation employs financial leverage (FL), government ownership (GOV), dividend payout (DIV), fixed assets to total assets (FA) and exchange rate (EXR) as independent variables, while the profit is described by return-on-assets (ROA). The study results show that there are four factors that have an impact on ROA, namely, leverage, government ownership, dividend, and exchange rate. Whereas leverage and exchange rate have negative influence on ROA, government ownership and dividend payment have a positive effect. The findings of this study suggest that high debt ratio in capital structure and the negative effect of exchange rate on their companies' efficiency can adversely affect the profit of enterprises. Also, plausible extent of government ownership and dividend payment could also be considered to optimize corporate performance.

극저온의 흡기 온도 조건에서 실린더 내 디젤 연료의 분무 특성 (Spray Characteristics of Diesel Fuel in a Cylinder under Cryogenic Intake Air Temperature Conditions)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제26권1호
    • /
    • pp.18-25
    • /
    • 2021
  • The objective of this study is to investigate the effect of cryogenic intake air temperature on the injected fuel droplet behavior in a compression ignition engine under the different start of energizing timing. To achieve this, the intake air temperatures were changed from -18℃ to 18℃ in steps of 9℃, and the result of fuel evaporation rate, Sauter mean diameter, and equivalence ratio distributions were compared. When the intake air temperature decreased in steps of 9℃, less fuel was evaporated by about 3.33% because the cylinder temperature was decreased. In addition, the evaporated fuel amount was increased with retarding the start of energizing timing because the cylinder temperature raised. However, the difference was decreased according to the retarded start of energizing timing because the cylinder pressure was also increased at the start of fuel injection. The equivalence ratio was reduced by 5.94% with decreasing the intake air temperature. In addition, the ignition delay was expected to longer because of the deteriorated evaporation performance and the reduced cylinder pressure by the low intake air temperature.

IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가 (Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank)

  • 박희우;박진성;조종래
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법 (Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models)

  • 주영석;신승준
    • 산업경영시스템학회지
    • /
    • 제45권3호
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구 (Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift)

  • 김준영;유영준;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권3호
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.