• Title/Summary/Keyword: engine performance

Search Result 3,696, Processing Time 0.03 seconds

High Performance IP Fowarding Engine for ATM based Gigabit Routers

  • Park, Byeong-Cheol;Park, Chang-Sik;Jeong, Youn-Kwae;Lee, Jeong-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.533-536
    • /
    • 2000
  • In this paper, we proposed high performance packet forwarding engine for asynchronous transfer mode(ATM) based gigabit routers. The forwarding engine is based on ATM switch and accommodates four 622Mbps ports. The forwarding engine has been designed to be able to process the Intemet protocol(IP) packet at 2.5Gbps using the pipelined If header processing and lookup control mechanism. For high performance packet forwarding, we used content addressable memory(CAM) based routing coprocessor operating in hardware and implemented the pipelined lookup control function into a field programmable gate array(FPGA). The pipelined packet header processing mechanism enhanced the forwarding performance of the If packets ingressed from four different 622Mbps ports. Moreover, the If lookup controller designed to have the performance up to 12.5Mpps. The proposed forwarding engine is also designed to support differentiated services(DS) and multiprotocol label switching(MPLS).

  • PDF

Effect of Fuel Injection Timing on the Performance and Exhaust Emissions in IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 디젤기관에서 연료분사시기 변화에 따른 기관성능 및 배기배출물 특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2004
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. However, BDF can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the effects of injection timing on the characteristics of performance and emissions with BDF in IDI diesel engine, BDF derived from rice bran oil was considered in this study. The engine was operated at six different injection timings and six loads at a single engine speed of 2000rpm. When the injection timing was retarded, better results were obtained, which may confirm the advantage of BDF. The reduction of NOx and smoke was observed for a 2$^{\circ}$ retarded injection timing without any sacrifice of BSEC.

A study on performance improvement of natural gas fueled engine (천연가스 기관의 성능 향상에 관한 연구)

  • 정동수;정진도;서승우;최교남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-179
    • /
    • 1992
  • Generally speaking, natural gas possesses several characteristics that make it desirable as an engine fuel : for example (1) lower production cost, (2) abundant commodity and (3) cleaner energy source than gasoline. Due to the physical characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of 10-20% when compared to a convensional gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of air/fuel ratio, spark timing advance and supercharging effect by forced air supply method.

A Study on the Lean Combustion of the Gasoline Engine with Air Assisted Fuel Injection System (공기 보조 연료 분사 장치가 있는 가솔린 기관의 희박 연소에 관한 연구)

  • Kim, S.W.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1994
  • This paper describes the effect of air assisted fuel injection system(AAI) using compressed air to improve the performance of lean combustion engine. AAI is designed to promote fuel atomization and intake flow. In order to investigate the performance of engine with AAl, experiments are conducted varying the engine revolution speed, lean air-fuel ratio and intake manifold pressure. Compared with the original engine, the performance of the engine with MI is improved as the air-fuel mixture becomes leaner or the engine load becomes lower. The descreasing rate of BSFC is propotional to the relative air-fuel ratio and the lean misfire limit extended more than 0.2 relative airfuel ratio.

  • PDF

Definition of Engine Component Performance Test Range of 75tf Class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.91-97
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.

The Effect of Lubricant Containing Copper Alloy Fine Particles on a Marine Diesel Engine (극미세 구리합금입자(NICO)를 이용한 특수윤활유가 박용기관 성능에 미치는 영향)

  • 소병두;임희성;박권하
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.61-67
    • /
    • 2000
  • Many research works for improving a boundary lubrication performance have been executed by using solid lubricants, and been tried to apply an engine lubrication. However those general lubricants like MoS$_2$ or PTFE have not been applied on engines due to the extreme conditions such as very high temperature and pressure by combustion process in a cylinder. A copper nickel alloy fine particle has been introduced and studied. In this Paper the lubricant using the alloy Particles is applied on a marine diesel engine and assessed by the engine performance test The results showed the increase of cylinder pressure related strongly to the engine efficiency as well as the improving the engine lubrication performance.

  • PDF

A Study on the Combustion and Exhaust Gas Characteristics of Single Cylinder Engine for DME and Diesel (DME와 디젤 단기통 엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Hyun-Chul;Kang, Woo;Kim, Byoung-Soo;Park, Sang-Hoon;Chung, Jae-Woo;Park, Jong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.80-89
    • /
    • 2004
  • In order to confront the increasing air pollution and the tightening emission restrictions, this research developed a diesel engine using DME, the advanced smoke-free alternative fuel. By numerical analysis, flow field, spray, and combustion phenomenon of the DME engine was presented. Using an experimental method, the configuration of the fuel supply system and operation/power performance was tested with the current plunger pump. Most emission performance, especially smoke performance was significantly improved. The possibility of conversion from the current diesel engine into the DME engine was affirmed in this research. However, it was found that the increase of engine RPM and fuel amount need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.

Combustion and Exhaust Emission Characteristics of Bio-Ethanol Fuel(E100) in SI Engine (SI 엔진에서 바이오에탄올 연료(E100)의 연소 및 배기특성)

  • Ha, Sung-Yong;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.582-588
    • /
    • 2008
  • An experimental investigation was conducted to investigate the effect of Bio-ethanol fuel on the engine performance and exhaust emission characteristics under various engine operating conditions. To investigate the effect of bio-ethanol fuel, the commercial 1.6L SI engine equipped with 4 cylinder was tested on EC dynamometer. The engine performance including brake torque, brake specific fuel consumption, and barke specific energy consumption of bio-ethanol fuel was compared to those obtained by pure gasoline. Furthermore, the exhaust emissions were analyzed in terms of regulated exhaust emissions such as unburned hydrocarbon, oxides of nitrogen, and carbon monoxide.Result of this work shows that the effect of blending of ethanol to gasoline caused drastic decrease of emissions under various operating conditions. Also, improved engine performance such as brake torque and brake power were indicated for bio-ethanol fuel.

EXPERIMENTAL INVESTIGATION ON THE EFFECT OF MAGNETIC FLUX TO REDUCE EMISSIONS AND IMPROVE COMBUSTION PERFORMANCE IN A TWO-STROKE, CATALYTIC-COATED, SPARK-IGNITION ENGINE

  • Govindasamy, P.;Dhandapani, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.533-542
    • /
    • 2007
  • The two stroke spark ignition engine is the greatest contributor of the total vehicular pollution in a country like India. It is therefore an item that requires great attention in order to reduce fuel consumption and its concomitant pollution. The use of strong magnetic charge in the fuel line gives a complete and clean burn so that power is increased while operating expenses are reduced. The magnetic flux on the fuel line dramatically reduces harmful exhaust emissions while increasing mileage, thereby saving money and improving engine performance. It increases combustion efficiency and provides higher-octane performance. The experimental results show that the magnetic flux on fuel reduces the carbon monoxide emission up to 13% in a base engine, 23% in a copper-coated engine and 29% in a zirconia-coated engine.

Definition of Engine Component Performance Test Range of 75tf class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.51-56
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.

  • PDF