• Title/Summary/Keyword: engine facility

Search Result 263, Processing Time 0.028 seconds

The Evaluation of NOx Emission Factor from Large Combustion Facilities in Seoul (서울지역 대형연소시설에서의 질소산화물 배출계수 산정)

  • 조기찬;최종욱;박후경;유병태
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.78-83
    • /
    • 2000
  • The emission factor of nitrogen oxides(NOx) was evaluate to clarify the characteristics of NOx emitted from seven large combustion facilities in seoul area. The emission factors of NOx at A-1 and A-2 facilities of internal combustion engine were 66.957kgNOx/ton and 20.913kgNOx/ton, respectively. The emission factor of A-1 facility was higher than that of A-2 facility even same internal combustion engine, because A-1 facility adopted SCR(selective catalystic reactor) for reduction of NOx emission factor of A-2, A-4, and A-7 power generation boiler facilities were 4.300kgNOx/ton, 2.460kgNOx/ton and 1.796kgNOx/ton, respectively. The capacity of A-2 facility was about two times than that of A-4 and A-7. These emission factors were lower than those at facilities in other areas of korea, because of using low NOx burner of power generation boiler. The emission factors of NOx at A-3 and A-6 incinerator facilities were 0.147kgNOx/ton and 0.221kgNOx/ton which were lower than other facilities, respectively, because these facilities incinerate municipal solid waste of low heating value and uwe SCR for reducing NOx concentration.

  • PDF

Freejet 타입 램제트 엔진 성능시험기 기본설계

  • Lee, Yang-Ji;Cha, Bong-Jun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.65-78
    • /
    • 2004
  • This research was conducted for an acquisition of the ramjet engine test facility design technique which are concerned about freejet type test facility. In this research, we concentrated on the design technique and the construction technique of the vitiation air heater(VAH), test section, diffuser and ejector. Based on the operating modes of the basic test facility, ten operating modes in coordinates "Altitude-Mach number" was regenerated from Mach 2, Altitude 0km to Mach 5, Altitude 15km. In this operating modes, we calculated a design parameter of the supersonic nozzle, VAH, diffuser and ejector and acquired a technique for the ramjet test facility operating and repairing.

  • PDF

Idle speed control of car engine using microcontroller (마이크로컨트롤러를 이용한 자동차 엔진의 공회전 속도 제어)

  • 장재호;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.287-291
    • /
    • 1992
  • Recently, electronic engine control system is used in many automotives for high efficiency and low pollution. In order to perform these requirements, fuel injection control, spark timing control, knock control, exhaust gas recirculation control and idle speed control should be implemented. In this paper, idle speed control system using microcontroller is developed, which is compact in hardware, but powerful in software performing efficient control and various compensations for engine condition and environments. If idle speed is low engine operation is not smooth, reversely if high, fuel consumption is increased. Therefore idle speed must be maintained as low as possible within the scope that ensures smooth operation of engine. Also, an engine signal simulator, which generates various signals from engine, is realized for test facility.

  • PDF

Automotive Engine Oil and Vehicle Fuel Economy (자동차 엔진오일과 연비)

  • 이영재;김강출;표영덕
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.155-161
    • /
    • 2000
  • To improve the vehicle fuel economy, various technologies such as improvement of power train efficiency, use of light weight material, improvement of aerodynamic design, have been studied. One of the possible way to improve the vehicle fuel economy is to reduce the engine friction loss by improving the engine oil characteristics. In the present paper, it was examined the effect of the engine oil viscosity and the addition of friction modifier to engine oil on vehicle fuel economy improvements. Moreover, the effect of engine oil degradation on vehicle fuel economy was examined with two gasoline vehicles and one diesel vehicle by using the fuel economy test facility.

  • PDF

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chun, Yonggahp;Cho, Namkyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.92-97
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.

Flow Control Characteristics of Cavitating Venturi in a Liquid Rocket Engine Test Facility (액체로켓엔진 연소시험설비에서의 캐비테이션 벤튜리 유량공급 특성)

  • Kang, Donghyuk;Ahn, Kyubok;Lim, Byoungjik;Han, Sanghoon;Choi, Hwan-Seok;Seo, Seonghyeon;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.84-91
    • /
    • 2014
  • The flow rate control of a cavitating venturi has been investigated with downstream pressure variation. A set of cavitating venturies for a liquid rocket engine thrust chamber firing test facility have been designed and manufactured. The flow characteristics of the cavitating venturies have been analyzed by experimental and computational methods. Results showed that constant mass flow rate condition was established by the cavitation inside the venturi. However, upstream pressure less than the actual design pressure of the cavitating venturi could not supply a constant flow rate.

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chung, Yong-Gahp;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.502-506
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.

  • PDF

Modeling and Simulation of Combustion Chamber Test Facility Fuel Supply System (연소기 연소시험 설비 연료 공급 시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF