• Title/Summary/Keyword: engine facility

Search Result 263, Processing Time 0.026 seconds

Design of High-Frequency Data Acquisition System for Combustor Combustion Test Facility (연소기 연소시험설비 고주파 계측 시스템 설계)

  • Ahn, Kyu-Bok;Kang, Dong-Hyuk;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.461-464
    • /
    • 2012
  • The high-frequency data acquisition system of the rocket engine test facility has been updated to perform hot-firing tests of 7 ton-class liquid rocket engine combustion chambers which will be used for the third stage of the Korea space launch vehicle II. The paper deals with the design of the updated high-frequency data acquisition system and explains its main functions.

  • PDF

The characteristics of thermo-acoustic oscillation happened at PTA-II of KSR-III rocket (KSR-III Rocket 종합 추진 시험 설비에서 발생한 열-음향학적 진동의 특성)

  • S. Cho;S. Kang;Kim, Y.;I. Cho;S. Oh;Lee, D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.364.2-364
    • /
    • 2002
  • Thermoacoustic oscillation, which stems from phase correlation between unsteady heat release and acoustic fluctuation, can cause severe vibration and incite the excessive local heat transfer inside the rocket engine. It is very important to understand and prevent this phenomenon in the way of rocket engine development. In this study, the propulsion test facility of KSR-III, which is the first liquid propellant rocket developed by KARI, will be introduced. and the characteristics of thermoacoustic ocillation occurred at the facility will be examined.

  • PDF

Small Turbojet Engine Test and Uncertainty Analysis (소형 터보제트 엔진 시험 및 불확도 분석)

  • Jun, Yong-Min;Yang, In-Young;Nam, Sam-Sik;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.118-126
    • /
    • 2002
  • The Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute and has been being operated for the gas turbine engines in the class of 3,000 lbf thrust. To enhance the confidence level of AETF to the international level, a series of studies and facility modification have been conducted to improve the measurement uncertainty and reliability. In this paper, some part of the facility evaluation tests performed with a single spool turbojet engine are introduced. Tests were performed simulating the flight conditions as steady state, sea level for various flight speeds (i.e., Mn=0.3, 0.5, 0.7, 0.9). The obtained test results are compared with the predicted values of the engine DECK. The measurement uncertainties of airflow, net thrust, fuel flow and SFC showed 0.791~0.914%, 0.851~1.706%, 1.372~7.348% and 1.642~5.205%, respectively. Thus, from this research, the improvement methods of uncertainties on AETF has been confirmed.

Design and Manufacture of Storage Air Heater (축열식 가열기의 설계 및 제작)

  • Lee, Yang-Ji;Kang, Sang-Hun;Park, Poo-Min;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.43-46
    • /
    • 2006
  • Storage air heater(SAH) is a general purpose facility that is used to simulate the high altitude condition of supersonic ground test facility, thurst compensation test of rocket engine nozzle and gas turbine engine combustor test. SAH in KARI is built to simulate the total temperature of the supersonic ground test facility which has a wide flight envelope from altitude 0km, Mach 2 to altitude 25km, Mach 5 and operates up to 1300K, 3.5MPa. In this paper, we introduces the SAH in JAXA which is model of SAH in KARI and summarizes the design process and manufacture of ours.

  • PDF

Design Review of Combustion Chamber/Turbo-pump Test Facility of Liquid Rocket Engine for KSLV-II (한국형발사체 액체엔진 연소기 및 터보펌프 시험설비 배치 및 설계에 대한 검토)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.109-112
    • /
    • 2011
  • The result of design review and arrangement of a combustion chamber test facility(CTF) and a turbo-pump real propellant test facility(TPTF) is briefly described. The development/qualification tests of combustion chamber and turbo-pump for 75ton-class liquid rocket engine will be performed in CTF and TPTF. The critical design of hydraulic-pneumatic system, control and data acquisition system, test stand cell, and auxiliary facilities in CTF and TPTF was performed.

  • PDF

Mach 5 Performance Verification of Free-jet Type Ground Propulsion Test Facility for Scramjet Engine Intake Test (스크램제트 엔진 흡입구 시험을 위한 자유제트형 지상추진시험설비의 마하 5 성능 검증)

  • Lee, Yang Ji;Yang, Inyoung;Lee, Kyung Jae;Oh, Jung Hwan;Choi, Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • In order to perform the scramejt engine intake ground test using the Scramjet Engine Test Facility(SETF) of the Korea Aerospace Research Institute. we introduced the test availability check procedure that is generally conducted. The design process of the newly manufactured Mach 5 nozzle for the scramjet intake test was summarized, a device for checking the core flow distribution of the nozzle was explained, and the core flow test analysis results were written. Through a series of test results, it was confirmed that the intake was located in the new Mach 5 nozzle core.

Test of KSR-III Rocket Propellant Feeding System Using PTA-II Test Facility (PTA-II 시험설비를 활용한 KSR-III Rocket 추진기관시스템 종합시험)

  • Kang Sun-il;Cho Sang-yoen;Kwon Oh-sung;Lee Jeong-ho;Oh Seung-hyup;Ha Sung-up;Kim Young-han
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.263-266
    • /
    • 2002
  • The KSR-III developed by KARI is the first rocket vehicle which is adopting the liquid propellant rocket engine system in Korea. Not only the engine itself, but also the propellant feeding system is one of the most important component in liquid rocket vehicle. In this paper, the authors are intended to introduce the multi-purpose test facility(PTA-II Test Facility) which is constructed for the variety of tests on KSR-III feeding system(single component tests, verification tests, cold flow tests and combustion tests). With the results of these tests, we can identify the characteristics of rocket feeding system and decide the optimum setting values of feeding system for the successful flight.

  • PDF

The high altitude test method of Scramjet engine combustor model (스크램제트 연소기 모델의 고공시험 연구)

  • Woo Kwan Je;Kim Young Soo;Skivin V. A
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.271-274
    • /
    • 2002
  • This paper is investigated construction of the Scramjet test facility and test method of Scramjet engine combustor model. Scramiet engine combustor model test was performed at Lab C-16BK CIAM (Central Institute of Aviation Motors) at Tyraevo in Moscow. The velocity of flow in the combustion chamber equal to Mach number 2.49 with single hole fuel spray nozzle injector and test duration equal to 7 seconds. Therefore In this paper is showed high altitude test method of Scramjet combustor model and the proper structure of combustor with single hole fuel spray nozzle.

  • PDF

Altitude Engine Test (고공 환경 엔진 시험)

  • Lee Jin-Kun;Kim Chun-Taek;Yang Soo-Seok;Lee Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.104-111
    • /
    • 2005
  • Gas turbine engines for aircraft are usually operated at the altitude condition which is quite different from the ground condition. In order to measure the precise performance data at the altitude condition, the engine should be tested at the altitude condition by a real flight test or an altitude simulation test with an altitude test facility. In this paper, the present state of the altitude test facility and the test technologies at urn(Korea Aerospace Research Institute) will be introduced.

The Air Flow Measurement and Prediction of Pressure Loss at Engine Inlet Duct (엔진 입구 덕트에서 공기유량 측정 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Yang, In-Young;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.

  • PDF