• 제목/요약/키워드: energy-transfer

검색결과 4,139건 처리시간 0.167초

Synergistically Enhanced Oxygen Evolution Catalysis with Surface Modified Halloysite Nanotube

  • Hyeongwon Jeong;Bharat Sharma;Jae-ha Myung
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.96-104
    • /
    • 2023
  • Synergistically increased oxygen evolution reaction (OER) of manganese oxide (MnO2) catalyst is introduced with surface-modified halloysite nanotube (Fe3O4-HNTs) structure. The flake shaped MnO2 catalyst is attached on the nanotube template (Fe3O4-HNTs) by series of wet chemical and hydrothermal method. The strong interaction between MnO2 and Fe3O4-HNTs maximized active surface area and inter-connectivity for festinate charge transfer reaction for OER. The synergistical effect between Fe3O4 layer and MnO2 catalyst enhance the Mn3+/Mn4+ ratio by partial replacement of Mn ions with Fe. The relatively increased Mn3+/Mn4+ ratio on MnO2@FHNTs induced 𝜎* orbital (eg) occupation close to single electron, improving the OER performances. The MnO2@FHNTs catalyst exhibited the reduced overpotential of 0.42 V (E vs. RHE) at 10 mA/cm2 and Tafel slope of (99 mV/dec), compared with that of MnO2 with unmodified HNTs (0.65 V, 219 mV/dec) and pristine MnO2 (0.53 V, 205 mV/dec). The present study provides simple and innovative method to fabricate nano fiberized OER catalyst for a broad application of energy conversion and storage systems.

구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용한 메탄올 수증기 개질반응의 고정층 반응기 CFD 시뮬레이션 (FBR CFD Simulation of Steam Methanol Reforming Reaction using Intrinsic Kinetic Data of Copper-impregnated Hydrotalcite Catalyst)

  • 이재혁;신동일;안호근
    • 한국가스학회지
    • /
    • 제27권1호
    • /
    • pp.78-85
    • /
    • 2023
  • 구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용하여 메탄올 수증기 개질 반응의 고정층 반응기 Computational Fluid Dynamics(CFD) 시뮬레이션을 수행하였다. 이전 연구결과로부터 얻어진 20wt%의 구리가 함침된 하이드로탈사이트 촉매의 활성화 에너지는 97.4 kJ/mol, 전 지수 인자는 5.904 × 1010를 이용하였다. 그리고 고유의 키네틱 데이터를 사용하여 반응온도 (200-450 ℃) 및 메탄올과 물의 몰비 변화에 따른 전환율을 관찰하였다. 또한 위의 키네틱 상수를 power law 모델을 사용하여 Axial 2D Symmetry 시뮬레이션을 통해 상용반응기(I.D. 0.05 - 0.1 m, Length 1 m)의 열 및 물질유동해석을 예측하였다.

증착 온도가 라디오파 마그네트론 스퍼터링으로 성장한 SnO2:Eu3+ 박막의 특성에 미치는 영향 (Effects of deposition temperature on the properties of SnO2:Eu3+ thin films grown by radio-frequency magnetron sputtering)

  • 조신호
    • 한국표면공학회지
    • /
    • 제56권3호
    • /
    • pp.201-207
    • /
    • 2023
  • Eu3+-doped SnO2 (SnO2:Eu3+) phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering. The deposition temperature was varied from 100 to 400 ℃. The X-ray diffraction patterns showed that all the thin films had two mixed phases of SnO2 and Eu2Sn2O7. The 880 nmthick SnO2:Eu3+ thin film grown at 100 ℃ exhibited numerous pebble-shaped particles. The excitation spectra of SnO2:Eu3+ thin films consisted of a strong and broad peak at 312 nm in the vicinity from 250 to 350 nm owing to the O2--Eu3+ charge transfer band, irrespective of deposition temperature. Upon 312 nm excitation, the SnO2:Eu3+ thin films showed a main emission peak at 592 nm arising from the 5D07F1 transition and a weak 615 nm red band originating from the 5D07F2 transition of Eu3+. As the deposition temperature increased, the emission intensities of two bands increased rapidly, approached a maximum at 100 ℃, and then decreased slowly at 400 ℃. The thin film deposited at 200 ℃ exhibited a band gap energy of 3.81 eV and an average transmittance of 73.7% in the wavelength range of 500-1100 nm. These results indicate that the luminescent intensity of SnO2:Eu3+ thin films can be controlled by changing the deposition temperature.

Diagnosis of the Transitional Disk Structure of AA Ori by Modeling of Multi-Wavelength Observations

  • Kim, Kyoung Hee;Kim, Hyosun;Lee, Chang Won;Lyo, Aran
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.42.2-42.2
    • /
    • 2020
  • We report on multi-wavelength observations of AA Ori, a Young Stellar Object in Orion-A star-forming region. AA Ori is known to have a pre-transitional disk based on infrared observations including Spitzer/IRS data. We construct its broadband spectral energy distribution (SED) by not only taking data in the optical and IR region but also including Herschel/PACS, JCMT/SCUBA, and SMA observational data. We use the Monte Carlo radiative transfer code (RADMC-3D) to reconstruct the SED with a viscous accretion disk model initialized by a radially continuous disk and finally having an inner and outer dusty disk separated by a dust-depleted radial gap. By comparing the model SEDs with different configurations of disk parameters, we discuss the limits to find a single solution of model parameters to fit the data. We suggest that some models with a modified inner disk surface density gradient and some degree of dust depletion in the inner disk can explain the AA Ori's SED, from which we infer that the inner disk of AA Ori has evolved. We present that model configurations of a pre-transitional disk with a large gap extended to 60-80 AU in a settled dusty disk of a few hundred AU size with a high inclination angle (~60°) also create model SEDs close to the observed one. To distinguish whether the disk has a just-opened narrow gap or a large gap, with an altered surface density of the inner disk extended to 10 AU, we suggest a further investigation of AA Ori with high angular resolution observations.

  • PDF

표적 알파 치료의 현황 및 유용성에 대한 임상적 고찰 (Clinical Review of the Current Status and Utility of Targeted Alpha Therapy)

  • 최상규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권5호
    • /
    • pp.379-394
    • /
    • 2023
  • Targeted Alpha Therapy (TAT) is a new method of cancer treatment that protects normal tissues while selectively killing tumor cells using high cytotoxicity and short range of alpha particles, and target alpha therapy is a highly specific and effective cancer treatment strategy, and its potential has been proven through many clinical and experimental studies. This treatment method accurately delivers alpha particles by selecting specific molecules present in cancer tissue, which has an effective destruction and tumor suppression effect on cancer cells, and one of the main advantages of target alpha treatment is the physical properties of alpha particles. Alpha particles have a very high energy and short effective distance, interacting with target molecules in cancer tissues and having a fatal effect on cancer cells, which is known to cause DNA damage and cell death in cancer cells. TAT has shown positive results in preclinical and clinical studies for various types of cancers, especially those that resist or are unresponsive to existing treatments, but there are several challenges and limitations to overcome for successful clinical transition and application. These include the provision and production of suitable alpha radioisotopes, optimization of target vectors and delivery formulations, understanding and regulation of radiological effects, accurate dosage calculation and toxicity assessment. Future research should focus on developing new or improved isotopes, target vectors, transfer formulations, radiobiological models, combination strategies, imaging techniques, etc. for TAT. In addition, TAT has the potential to improve the quality of life and survival of cancer patients due to the possibility of a new treatment for overcoming cancer, and to this end, prospective research on more carcinomas and more diverse patient groups is needed.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • 한국재료학회지
    • /
    • 제33권10호
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • 제36권6호
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석 (Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model)

  • 윤종완;문소연;박상신
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.

Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators

  • Kyurae Kim;Myung-Ho Kim;Ji In Kang;Jong-In Baek;Byeong-Min Jeon;Ho Min Kim;Sun-Chang Kim;Won-Il Jeong
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.89-97
    • /
    • 2024
  • Background: Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods: To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results: Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion: GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.