DOI QR코드

DOI QR Code

FBR CFD Simulation of Steam Methanol Reforming Reaction using Intrinsic Kinetic Data of Copper-impregnated Hydrotalcite Catalyst

구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용한 메탄올 수증기 개질반응의 고정층 반응기 CFD 시뮬레이션

  • Jae-hyeok Lee (R&D Center of Wonik Materials Co.) ;
  • Dongil Shin (Department of Chemical Engineering, Myongji University) ;
  • Ho-Geun Ahn (Dept. of Chemical Engineering, Sunchon National University)
  • 이재혁 (원익머트리얼즈 연구소) ;
  • 신동일 (명지대학교 화학공학과) ;
  • 안호근 (순천대학교 화학공학과)
  • Received : 2022.12.30
  • Accepted : 2023.03.16
  • Published : 2023.03.31

Abstract

Fixed-bed reactor Computational Fluid Dynamics (CFD) simulation of methanol steam reforming reaction was performed using the intrinsic kinetic data of the copper-impregnated hydrotalcite catalyst. The activation energy of the copper hydrotalcite catalyst obtained from the previous study results was 97.4 kJ/mol, and the pre-exponential was 5.904 × 1010. Process simulation was performed using the calculated values and showed a similar tendency to the experimental results. And the conversion rate according to the change of the reaction temperature (200 - 450 ℃) and the molar ratio of methanol and water was observed using the intrinsic kinetic data. In addition, mass and heat transfer phenomena analysis of a commercial reactor (I.D. 0.05 - 0.1m, Length 1m) was predicted through axial 2D Symmetry simulation using the power law model of the above kinetic constants.

구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용하여 메탄올 수증기 개질 반응의 고정층 반응기 Computational Fluid Dynamics(CFD) 시뮬레이션을 수행하였다. 이전 연구결과로부터 얻어진 20wt%의 구리가 함침된 하이드로탈사이트 촉매의 활성화 에너지는 97.4 kJ/mol, 전 지수 인자는 5.904 × 1010를 이용하였다. 그리고 고유의 키네틱 데이터를 사용하여 반응온도 (200-450 ℃) 및 메탄올과 물의 몰비 변화에 따른 전환율을 관찰하였다. 또한 위의 키네틱 상수를 power law 모델을 사용하여 Axial 2D Symmetry 시뮬레이션을 통해 상용반응기(I.D. 0.05 - 0.1 m, Length 1 m)의 열 및 물질유동해석을 예측하였다.

Keywords

Acknowledgement

본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력 기반 지역혁신 사업의 결과입니다. (2021RIS-002) 또한 명지대학교 신동일 교수님 연구실의 COMSOL software 지원에 감사를 드립니다.

References

  1. International Energy Agency (IEA), Renewables 2020 Analysis and forecast to 2025, (2020)
  2. Balat, M., "Potential Importance of Hydrogen as a Future Solution to Environmental And Transportation Problems," Int. J. Hydrogen Energy, 33(15), 4013-4029, (2008) https://doi.org/10.1016/j.ijhydene.2008.05.047
  3. Demirbas, A., and Dincer, K., "Sustainable Greed Diesel: A Futuristic View," Energy Sources, Part A., 30(13), 1233-1241, (2008) https://doi.org/10.1080/15567030601082829
  4. Roman J., Santhanam, K. S. V., Miri, Massoud J., Bailey, Alla V., Takacs, Gerald A. Introduction to hydrogen Technology, John Wiley & Sons, (2008)
  5. Meshkini, F., Taghizadeh, M., and Bahmani, M., "Investigating the Effect of Metal Oxide Addivites on the Properties of Cu/ZnO/Al2O3 Catalysts in Methanol Synthesis from Syngas Using Factorial Experimental Design", Fuel, 89, 170-175, (2010) https://doi.org/10.1016/j.fuel.2009.07.007
  6. Lee, J.H., Jang, S.S., Ahn, H.G., "Comparative Study of Nickel and Copper Catalysts Using Al2O3 and Hydrotalcite in Methanol Steam Reforming", Journal of The Korean Institute of Gas, 26(2), 14-20, (2022) https://doi.org/10.7842/KIGAS.2022.26.2.14
  7. Lee, J.H., Jang, S.S., Ahn, H.G., "Kinetic Study of Copper Hydrotalcite Catalyst in Methanol Steam Reforming", Journal of The Korean Institute of Gas, 26(5), 16-21, (2022) https://doi.org/10.7842/KIGAS.2022.26.5.16
  8. Park, H.G., Han, S.Y., Jun, K.W., Woo, Y., Park, M.J., Kim, S.K., "Bench-Scale Steam Reforming of Methane for Hydrogen Production", Catalysts, 9, 615-629, (2019) https://doi.org/10.3390/catal9070615