• Title/Summary/Keyword: energy-efficient communication

Search Result 699, Processing Time 0.028 seconds

Energy-Aware Traffic Engineering in Hybrid SDN/IP Backbone Networks

  • Wei, Yunkai;Zhang, Xiaoning;Xie, Lei;Leng, Supeng
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.559-566
    • /
    • 2016
  • Software defined network (SDN) can effectively improve the performance of traffic engineering and will be widely used in backbone networks. Therefore, new energy-saving schemes must take SDN into consideration; this action is extremely important owing to the rapidly increasing energy consumption in telecom and Internet service provider (ISP) networks. Meanwhile, the introduction of SDN in current networks must be incremental in most cases, for technical and economic reasons. During this period, operators must manage hybrid networks in which SDN and traditional protocols coexist. In this study, we investigate the energy-efficient traffic engineering problem in hybrid SDN/Internet protocol (IP) networks. First, we formulate the mathematical optimization model considering the SDN/IP hybrid routing mode. The problem is NP-hard; therefore, we propose a fast heuristic algorithm named hybrid energy-aware traffic engineering (HEATE) as a solution. In our proposed HEATE algorithm, the IP routers perform shortest-path routing by using distributed open shortest path first (OSPF) link weight optimization. The SDNs perform multipath routing with traffic-flow splitting managed by the global SDN controller. The HEATE algorithm determines the optimal setting for the OSPF link weight and the splitting ratio of SDNs. Thus, the traffic flow is aggregated onto partial links, and the underutilized links can be turned off to save energy. Based on computer simulation results, we demonstrate that our algorithm achieves a significant improvement in energy efficiency in hybrid SDN/IP networks.

Energy Cognitive Dynamic Adaptive Streaming over HTTP

  • Kim, Seohyang;Oh, Hayoung;Kim, Chongkwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2144-2159
    • /
    • 2015
  • CISCO VNI predicted an average annual growth rate of 66% for mobile video traffic between 2014 and 2019 and accordingly much academic research related to video streaming has been initiated. In video streaming, Adaptive Bitrate (ABR) is a streaming technique in which a source video is stored on a server at variable encoding rates and each streaming user requests the most appropriate video encoding rate considering their channel capacity. However, these days, ABR related studies are only focusing on real-time rate adaptation omitting energy efficiency though it is one of the most important requirement for mobile devices, which may cause dissatisfaction for streaming users. In this paper, we propose an energy efficient prefetching based dynamic adaptive streaming technique by considering the limited characteristics of the batteries used in mobile devices, in order to reduce the energy waste and provide a similar level of service in terms of the average video rate compared to the latest ABR streaming technique which does not consider the energy consumption. The simulation results is showing that our proposed scheme saves 65~68% of energy at the average global mobile download speed compared to the latest high performance ABR algorithm while providing similar rate adaptation performance.

Distance Aware Intelligent Clustering Protocol for Wireless Sensor Networks

  • Gautam, Navin;Pyun, Jae-Young
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.122-129
    • /
    • 2010
  • Energy conservation is one of the most important issues for evaluating the performance of wireless sensor network (WSN) applications. Generally speaking, hierarchical clustering protocols such as LEACH, LEACH-C, EEEAC, and BCDCP are more efficient in energy conservation than flat routing protocols. However, these typical protocols still have drawbacks of unequal and high energy depletion in cluster heads (CHs) due to the different transmission distance from each CH to the base station (BS). In order to minimize the energy consumption and increase the network lifetime, we propose a new hierarchical routing protocol, distance aware intelligent clustering protocol (DAIC), with the key concept of dividing the network into tiers and selecting the high energy CHs at the nearest distance from the BS. We have observed that a considerable amount of energy can be conserved by selecting CHs at the nearest distance from the BS. Also, the number of CHs is computed dynamically to avoid the selection of unnecessarily large number of CHs in the network. Our simulation results showed that the proposed DAIC outperforms LEACH and LEACH-C by 63.28% and 36.27% in energy conservation respectively. The distance aware CH selection method adopted in the proposed DAIC protocol can also be adapted to other hierarchical clustering protocols for the higher energy efficiency.

Min-Distance Hop Count based Multi-Hop Clustering In Non-uniform Wireless Sensor Networks

  • Kim, Eun-Ju;Kim, Dong-Joo;Park, Jun-Ho;Seong, Dong-Ook;Lee, Byung-Yup;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.13-18
    • /
    • 2012
  • In wireless sensor networks, an energy efficient data gathering scheme is one of core technologies to process a query. The cluster-based data gathering methods minimize the energy consumption of sensor nodes by maximizing the efficiency of data aggregation. However, since the existing clustering methods consider only uniform network environments, they are not suitable for the real world applications that sensor nodes can be distributed unevenly. To solve such a problem, we propose a balanced multi-hop clustering scheme in non-uniform wireless sensor networks. The proposed scheme constructs a cluster based on the logical distance to the cluster head using a min-distance hop count. To show the superiority of our proposed scheme, we compare it with the existing clustering schemes in sensor networks. Our experimental results show that our proposed scheme prolongs about 48% lifetime over the existing methods on average.

A Game Theoretic Study of Energy Efficient Cooperative Wireless Networks

  • Brown, Donald Richard III;Fazel, Fatemeh
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.266-276
    • /
    • 2011
  • In wireless networks, it is well-known that intermediate nodes can be used as cooperative relays to reduce the transmission energy required to reliably deliver a message to an intended destination. When the network is under a central authority, energy allocations and cooperative pairings can be assigned to optimize the overall energy efficiency of the network. In networks with autonomous selfish nodes, however, nodes may not be willing to expend energy to relay messages for others. This problem has been previously addressed through the development of extrinsic incentive mechanisms, e.g., virtual currency, or the insertion of altruistic nodes in the network to enforce cooperative behavior. This paper considers the problem of how selfish nodes can decide on an efficient energy allocation and endogenously form cooperative partnerships in wireless networks without extrinsic incentive mechanisms or altruistic nodes. Using tools from both cooperative and non-cooperative game theory, the three main contributions of this paper are (i) the development of Pareto-efficient cooperative energy allocations that can be agreed upon by selfish nodes, based on axiomatic bargaining techniques, (ii) the development of necessary and sufficient conditions under which "natural" cooperation is possible in systems with fading and non-fading channels without extrinsic incentive mechanisms or altruistic nodes, and (iii) the development of techniques to endogenously form cooperative partnerships without central control. Numerical results with orthogonal amplify-and-forward cooperation are also provided to quantify the energy efficiency of a wireless network with sources selfishly allocating transmission/relaying energy and endogenously forming cooperative partnerships with respect to a network with centrally optimized energy allocations and pairing assignments.

Energy-efficient Set-associative Cache Using Bi-mode Way-selector (에너지 효율이 높은 이중웨이선택형 연관사상캐시)

  • Lee, Sungjae;Kang, Jinku;Lee, Juho;Youn, Jiyong;Lee, Inhwan
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The way-lookup cache and the way-tracking cache are considered to be the most energy-efficient when used for level 1 and level 2 caches, respectively. This paper proposes an energy-efficient set-associative cache using the bi-mode way-selector that combines the way selecting techniques of the way-tracking cache and the way-lookup cache. The simulation results using an Alpha 21264-based system show that the bi-mode way-selecting L1 instruction cache consumes 27.57% of the energy consumed by the conventional set-associative cache and that it is as energy-efficient as the way-lookup cache when used for L1 instruction cache. The bi-mode way-selecting L1 data cache consumes 28.42% of the energy consumed by the conventional set-associative cache, which means that it is more energy-efficient than the way-lookup cache by 15.54% when used for L1 data cache. The bi-mode way-selecting L2 cache consumes 15.41% of the energy consumed by the conventional set-associative cache, which means that it is more energy-efficient than the way-tracking cache by 16.16% when used for unified L2 cache. These results show that the proposed cache can provide the best level of energy-efficiency regardless of the cache level.

Performance Study for S-MAC in Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.122-128
    • /
    • 2010
  • Efficient energy management is a very important issue in wireless sensor network since wireless sensor nodes are usually battery-powered. Recently, S-MAC protocol based on low duty-cycle has been proposed to reduce energy consumption. Even though research effort has been made to evaluate performance of S-MAC by conducting various simulations, however, some important simulation parameters are not well evaluated yet. In this paper, we identify the performance of S-MAC under different amount of streams and different patterns such as data rate and traffic. Through analyzing the simulation results, we discover weakness of S-MAC as well as analyze impact of amount of streams and packet pattern.

Communication Module Selection Algorithm for Energy Saving of Smartphone (스마트폰 에너지 절감을 위한 통신모듈 선택 알고리즘)

  • Lee, Chang-Moo;Lee, Seung-Jae;Choi, Deok-Jai
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.22-31
    • /
    • 2012
  • A Smartphone is an intelligent device combined mobile phone and pc's support functions, and can perform multiple functions to satisfy the demands of users. It has excellent processing power and communication modules(DMB, Wi-Fi, Bluetooth, NFC etc) to carry out the demands of users. But continuous using of battery power on processor and equipped modules causes acceleration of battery consumption. This means that effective power management in devices like smartphone is important. Therefore, the management of power consumption on system execution and communication module is a serious issue in this field of study. In this paper, we would like to propose a communication module selection algorithm based on energy consumption parameter of each communication module and data transfer time. Our scheme automatically select appropriate communication system to reduce high energy consumption on bluetooth sleep mode so that this scheme is more efficient and effective thus improving user convenience in longer usage time. Experimental results showed the 20% energy saving.

CMP: A Context Information-based Routing Scheme with Energy-based Message Prioritization for Delay Tolerant Networks

  • Cabacas, Regin;Ra, In-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.295-304
    • /
    • 2014
  • Communication infrastructure supports wide variety of mobile services such as photo and file sharing, location tracking, social network services and instant messaging. However, instances like power-loss and natural disasters disrupt these communication infrastructures unable to render support to these mobile services. Delay-tolerant networks (DTNs) offer a solution to these problems at hand. By utilizing mobility and opportunistic contacts among mobile devices, a plausible communication network can be establish and enable support to mobile applications. This paper presents an energy-efficient, reliable message delivery routing scheme with message prioritization rules for DTN. It uses the context information of nodes (mobile devices) such as the contact history (location and time of contact), speed/velocity, moving direction to determine the best forwarders among nodes in the network. The remaining energy of the nodes is also used to determine the message types a node can deliver successfully. The simulation results show that proposed approach outperforms Epidemic and Prophet routing schemes in terms of delivery ratio, overhead ratio, delivered messages per types and remaining energy.

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.