• 제목/요약/키워드: energy-based approach

Search Result 1,488, Processing Time 0.03 seconds

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

Estimation of seismic effective energy based parameter

  • Nemutlu, Omer Faruk;Sari, Ali;Balun, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.785-799
    • /
    • 2022
  • The effect of earthquakes in earthquake resistant structure design stages is influenced by the highest ground acceleration value, which is generally a strength-based approach in seismic codes. In this context, an energy-oriented approach can be suggested as an alternative to evaluate structure demands. Contrary to the strength-based approach, the strength and displacement demands of the structure cannot be evaluated separately, but can be evaluated together. In addition, in the energy-oriented approach, not only the maximum effects of earthquakes are taken into account, but also the duration of the earthquake. In this respect, it can be said that the use of energy-oriented earthquake parameters is a more rational approach besides being an alternative. In this study, strength and energy-oriented approaches of earthquake parameters of 11 different periods of single degree of freedom systems were evaluated over 28 different earthquake situations. The energy spectra intended to be an alternative to the traditional acceleration spectra were created using the acceleration parameter equivalent to the input energy. Two new energy parameters, which take into account the effective duration of the earthquake, are proposed, and the relationship between the strength-oriented spectral acceleration parameters and the energy parameters used in the literature is examined by correlation study. According to the results obtained, it has been seen that energy oriented earthquake parameters, which give close values in similar period situations, will be a good alternative to strength oriented earthquake parameters. It was observed that the energy parameters were affected by the effective duration of the earthquake, unlike the strength-based parameters. It has been revealed that the newly proposed energy parameters considering the effective duration give good correlations. Finally, it was concluded that the energy parameters can be used in the design, and the newly proposed effective energy parameters can shorten the analysis durations.

Experimental Results on the Energy-bounding Approach to Robustly Stable Rate-mode Bilateral Teleoperation Systems (속도 모드 양방향 원격 제어의 안정화 에너지 제한 방법의 실험 결과)

  • Park, Sung-Jun;Seo, Chang-Hoon;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.552-557
    • /
    • 2011
  • This paper presents experimental results on the energy-bounding approach to a rate-mode bilateral teleoperation control that can guarantee the robust system stability in variable time-delayed telecommunication environments. Previously, rate-mode energy bounding approach [15] was proposed and verified with experimental results using the simulated remote slave model. In this paper, a real experimental setup using an industrial robot (Denso) as a remote slave robot composed and conducted similar experiments with previous paper. In order to guarantee stability of the Denso when contacting with high impedance wall, velocity based impedance control modified by position based is used. Experimental results show that the rate-mode energy bounding approach can guarantee stable bilateral teleoperation system in the free and contact motion with variable time delay.

Decentralized energy market-based structural control

  • Lynch, Jerome Peter;Law, Kincho H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.557-572
    • /
    • 2004
  • Control systems are used to limit structural lateral deflections during large external loads such as winds and earthquakes. Most recently, the semi-active control approach has grown in popularity due to inexpensive control devices that consume little power. As a result, recently designed control systems have employed many semi-active control devices for the control of a structure. In the future, it is envisioned that structural control systems will be large-scale systems defined by high actuation and sensor densities. Decentralized control approaches have been used to control large-scale systems that are too complex for a traditional centralized approach, such as linear quadratic regulation (LQR). This paper describes the derivation of energy market-based control (EMBC), a decentralized approach that models the structural control system as a competitive marketplace. The interaction of free-market buyers and sellers result in an optimal allocation of limited control system resources such as control energy. The Kajima-Shizuoka Building and a 20-story benchmark structure are selected as illustrative examples to be used for comparison of the EMBC and centralized LQR approaches.

A Study for Predicting Building Energy Use with Regression Analysis (회귀분석에 의한 건물에너지 사용량 예측기법에 관한 연구)

  • 이승복
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1090-1097
    • /
    • 2000
  • Predicting building energy use can be useful to evaluate its energy performance. This study proposed empirical approach for predicting building energy use with regression analysis. For the empirical analysis, simple regression models were developed based on the historical energy consumption data as a function of daily outside temperature, the predicting equations were derived for different operational modes and day types, then the equations were applied for predicting energy use in a building. BY selecting a real building as a case study, the feasibilities of the empirical approach for predicting building energy use were examined. The results showed that empirical approach with regression analysis was fairly reliable by demonstrating prediction accuracy of $pm10%$ compared with the actual energy consumption data. It was also verified that the prediction by regression models could be simple and fairly accurate. Thus, it is anticipated that the empirical approach will be useful and reliable tool for many purposes: retrofit savings analysis by estimating energy usage in an existing building or the diagnosis of the building operational problems with real time analysis.

  • PDF

Fuzzy Logic Approach to Zone-Based Stable Cluster Head Election Protocol-Enhanced for Wireless Sensor Networks

  • Mary, S.A. Sahaaya Arul;Gnanadurai, Jasmine Beulah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1692-1711
    • /
    • 2016
  • Energy is a scarce resource in wireless sensor networks (WSNs). A variety of clustering protocols for WSNs, such as the zone-based stable election protocol-enhanced (ZSEP-E), have been developed for energy optimization. The ZSEP-E is a heterogeneous zone-based clustering protocol that focuses on unbalanced energy consumption with parallel formation of clusters in zones and election of cluster heads (CHs). Most ZSEP-E research has assumed probabilistic election of CHs in the zones by considering the maximum residual energy of nodes. However, studies of the diverse CH election parameters are lacking. We investigated the performance of the ZSEP-E in such scenarios using a fuzzy logic approach based on three descriptors, i.e., energy, density, and the distance from the node to the base station. We proposed an efficient ZSEP-E scheme to adapt and elect CHs in zones using fuzzy variables and evaluated its performance for different energy levels in the zones.

Energy-based Approach to Power Transfer System Analysis

  • Moon, Young-Hyun;Lee, Jong-Gi;Kwon, Yong-Jun
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.227-235
    • /
    • 2004
  • This paper presents a new theoretical approach to energy-based power system analysis for multibus power transmission systems. On the basis of mechanical analogy, an exact energy integral expression is derived for lossy multi-bus systems through rigorous energy analysis. A simple rigid rod model of mechanical power transfer system is introduced to address the physical meanings of potential energy terms associated with transfer conductances as well as transfer susceptances. Finally, energy-based analysis has been proposed to show that the energy function has all information of the power system characteristics.

Bayesian-based seismic margin assessment approach: Application to research reactor

  • Kwag, Shinyoung;Oh, Jinho;Lee, Jong-Min;Ryu, Jeong-Soo
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.653-663
    • /
    • 2017
  • A seismic margin assessment evaluates how much margin exists for the system under beyond design basis earthquake events. Specifically, the seismic margin for the entire system is evaluated by utilizing a systems analysis based on the sub-system and component seismic fragility data. Each seismic fragility curve is obtained by using empirical, experimental, and/or numerical simulation data. The systems analysis is generally performed by employing a fault tree analysis. However, the current practice has clear limitations in that it cannot deal with the uncertainties of basic components and accommodate the newly observed data. Therefore, in this paper, we present a Bayesian-based seismic margin assessment that is conducted using seismic fragility data and fault tree analysis including Bayesian inference. This proposed approach is first applied to the pooltype nuclear research reactor system for the quantitative evaluation of the seismic margin. The results show that the applied approach can allow updating by considering the newly available data/information at any level of the fault tree, and can identify critical scenarios modified due to new information. Also, given the seismic hazard information, this approach is further extended to the real-time risk evaluation. Thus, the proposed approach can finally be expected to solve the fundamental restrictions of the current method.

Comparison of Energy Efficiency by Production Frontier Approach: Based on OECD Countries (생산 프론티어 접근을 통한 에너지효율 비교: OECD 국가를 중심으로)

  • Kang, Sangmok;Kim, Haechang
    • Environmental and Resource Economics Review
    • /
    • v.20 no.1
    • /
    • pp.33-60
    • /
    • 2011
  • The purpose of the article is to compare the impacts of energy efficiency and economic growth for energy demand through production frontier approach in OECD countries. We compared the traditional energy intensity with energy efficiencies of production frontier approach, slack efficiency on the frontier, and estimated elasticity of energy demand for GDP growth. First, the energy intensity has a low relationship with energy efficiency by radial approach, but has constant correlations with slack energy efficiency, slack-adjusted efficiency by non-radial approach, and energy efficiency by horizon approach. If we measure energy efficiency only with energy elasticity, it may make a mistake. Especially the energy efficiency by radial approach has a tendency to overestimate most OECD countries. Second, as many countries have excess energy consumption of 17.3% even on the points of the frontier, reduction of energy consumption is necessary in addition. Third, the average energy elasticity of OECD countries is 1.1 close to elasticity 1. There exists the difference of elasticity among countries and the energy demands are also high in countries with high elasticity.

  • PDF