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Energy-based Approach to Power Transfer System Analysis

Young-Hyun Moon*, Jong-Gi Lee T and Yong-Jun Kwon*

Abstract - This paper presents a new theoretical approach to energy-based power system analysis for
multibus power transmission systems. On the basis of mechanical analogy, an exact energy integral
expression is derived for lossy multi-bus systems through rigorous energy analysis. A simple rigid rod
mode] of mechanical power transfer system is introduced to address the physical meanings of potential
energy terms associated with transfer conductances as well as transfer susceptances. Finally, energy-
based analysis has been proposed to show that the energy function has all information of the power

system characteristics.

Keywords: Direct method, Energy function, EMM (Equivalent Mechanical Model), Lagrange's

Equation, Energy Integral

1. Introduction

This paper presents a new theory of energy-based analysis
by using an energy integral based on an Equivalent
Mechanical Model (EMM) for stability analysis of
multimachine power systems. The energy-based approach
has been preferred for long by the system engineers since it
provides systematic procedures to set up the system dynamic
equations based on the energy function [1, 2].

Many approaches have been presented to develop energy
functions for power systems by using mechanical analogy
and mathematical approaches. Most of earlier energy
functions have some limitations in view of the fact that a
lossless power system has been considered with the
classical generation model[3, 4]. Introduction of the
structure-preserving energy concept[3-6] has recently made
considerable progress in the development of energy
functions to take into account the effects of reactive powers
and transmission-line resistances. The previous works[7, 8]
also show that a well-defined energy function can be
derived to reflect the transfer conductances under the

assumption of uniform R/X ratios for all transmission-lines.

It is a well-known fact that the energy function has all
information on the system dynamics, which leads to
energy-based system analysis including the Lagrange’s
equations and the Hamiltonian equations.

The power system is one of the most complicate systems
including various kinds of system models and device
models. Moreover, the power system is a special system to
transfer electric power with some specified angular
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velocity with invisibility. This makes it more difficult to
grasp the physical meanings of each term of the energy
functions. For example, the structure preserved energy
function includes potential energy terms associated with a
power dissipation element of a transfer conductance, which
is an uncommon result to bring about a lot of questions.
Due to these facts, there has been no attempt to apply the
energy-based system analysis to power systems, which
keeps power system analysis remaining an area difficult of
access for general system engineers.

This paper adopts an exact EMM to represent the
muitimachine systems with lossy transmission-lines[9, 10]
to develop a new approach to energy-based analysis. On
the basis of the EMM, an exact integral expression is
derived for lossy multimachine systems through rigorous
mathematical analysis. This provides the theoretical
background of the energy-based power system analysis
since the proposed EMM is a mechanical system which
exactly represents the power system dynamics. In order to
make out the physical meanings of the potential energy
terms related to transfer conductances, this study
investigates a simple mechanical power transfer system
with a rigid rod for mechanical analogy of the electric
power transmission system. As a result, it has been shown
that the energy terms associated with line susceptances
represent the energy store which is inevitably required for
power transfer. Similarly, it has been discussed that the
conductance-related energy terms can be interpreted as an
inevitable power loss which is required to transfer powers
in electric power transmission systems. The Rayleigh
dissipation functions [15] have been commonly used to
model resistive elements in power circuits. However, they
are applicable for instantancous energy analysis of the
system, but no longer valid for steady state power transfer
analysis. These provide a proper environment for us to
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attempt to apply an energy-based approach to power systems.

This study shows that Lagrange’s equations can be well
applied to power system analysis with the proposed energy
integral, providing systematic procedures to set up the
power system dynamic equations and additionally the load
flow equations for the static solutions. This means that the
energy integral has all information of power system
dynamics in both static and dynamic states. The proposed
approach enables us to utilize well-developed theories and
mathematical tools for the analysis of power system
dynamics.

2. Energy Integral Based on the Exact EMM

To begin with, consider a two-bus system with a
resistive and reactive transmission line in Fig.1 (a).

V28, V48

Rfj +in/ PLi +jQLi
' 2
G, =R, (R:+X})

(a) Two-Bus System with a resistive

V.26,

]

—/B; B, +jQy;
B, =X,/(R;+X])
(b) Equivalent System and reactive line
Fig. 1 Sample of Resistive and Reactive System

This system can be changed to an equivalent system
with two parallel lines: one with pure susceptance B, and

the other with pure conductance G, as shown in Fig.1 (b).

For the system in Fig.1 (b), the following EMM has been
successfully developed with introduction of the real and
imaginary springs in the previous works[9, 10].

F,=FJ +F/
=G,(V,-V,c080,)0— GV, sin 8, F )
—~B,V,sin8,0+ B,(V, -V, cos8,)f
=[B,(V,~V,;cos8,)-G,V,sin6,]¢
~[B,V,;sin®; —G,(V, -V, cos0,)]0
where G, =-G, =Re[Y,™]
G, =R, IR} +X?)
B, =X, [(R;+X])

Fig. 2 EMM using Line Impedances

The EMM developed for a general two-bus system can
be -easily generalized for multibus systems. For example,
we will consider the following 3-bus system, which is the
smallest system including all types of buses. The internal
reactances of the generators can be included in the
transmission impedances by eliminating the generator
terminal buses. However, the generator internal impedance
can be directly taken into account by considering an
element of transmission line with the internal impedance of
pure reactance.

P+jQy

Ry + Xy

PLk +jQLk
Fig. 3 3-Bus System

By assuming 6, >, >6,, we can obtain the following

EMM for the above system with the impedance model.

By observing the above force diagram, it can be shown
that the following force balance equations hold for arbitrary
bus i

Mieié_l_D‘i/eiézpmi_PLié+QGi+%Li_QLif.+zFij 2)

i i i i i

where i,je {(i),(j),(k)}

One can easily check that a substitution of (1) into the
above equation provides two directional force balance
equations which exactly agree with the power swing
equations for a generator bus, and with real and reactive
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power balance equations for a load bus [10]. The proposed
EMM can be applied to any multimachine system if the
classical model is adopted for all generators.

A

reference

Fig. 4 EMM for 3-bus System

An energy integral expression now be derived with the
use of the exact EMM. The classical generator model is
adopted in the energy integral derivation. The energy
integral of a system can be obtained by integrating the
differential energy dW due to its differential displacements.
In this section, an energy integral expression for power
systems is derived based on rigorous analysis of
differential energy changes in the EMM.

Considering the differential energy dW, due to the

differential changes in voltage magnitudes and phase
angles, i.e., av, and de, for an EMM of the 3-bus

system in Fig. 4. The energy integral of the whole system
can be calculated by integrating the total sum of the
differential energy dW, for each bus i as follows:

W= [Xaw) )

where c is an integral path which should be a solution path

In the above equation, differential energy dW, is given

by the scalar product of the total force acting on bus i and
the differential distance vector.
That is

dW,=-F, , -dx, =

il 1 1l

(V.d6,8+avi) (&Y

where

_ _Miéi_Di9i+Pmi_PLi é
il = V. V. (5)

i i i

1280y ”;)/C* 2us+TF, =0

i J#

In the above equations, F, is given by (1). It is noted that

F,

il

is always zero by (2). Substitution of (5) into (4) yields:

W, = Y {[G,(V, -V, cos6,) + BV, sin6, 1V,d6,
j#i

+[G,V,sin@, +B,(V, =V, cos8,)}dV, } @)
- (Pmi - PLi )191' _I:“Q'Gl—-’-%_:&:ldvx
+M0.d6,+DO.de, =0

The total differential energy due to all the differential

displacements of d@, and dV, (i=1,2,-7N) can be

calculated as follows :
dw =y aw, (6)

Now, we let o, =81‘ =éi and §, =6, for generator

bus i. By using the properties of Y, sus and the differential

rules, the following equation can be obtained with skillful
manipulations [7, 11].

) sz( BVYV, coseij,)

dW:—Zd(%B,

VV. cos8.d6. )
+Y6vae +3YyG,| T
,Z i i ZZ; U[+‘/j Sin eljd‘/‘ ]

- z F,d6, + Z P,db, - 2|:'QGI—+Q‘%_—QIJ:|‘1VI

+YModo +Y Dwds =0

The energy integral can be obtained by integrating (7)
from the initial state to a certain state.

WO _w j‘e’de

¢ Jioy.vy)

o ®
——BV> ——ZBUVV cos8, + fcv e,

i
26 f 0
= J, Bt +, [ Pd0, - [-————QG'J’%C' O }dv,.

i

]#1

(vv c0s8,d8,+V, sin6,dV,)

+%Mi(o,.2 + [ D,,mfdt} —C(®,,8,,V,)=0



230 Energy-based Approach to Power Transfer System Analysis

with 6, =8,,V, = E,, = constant for Gen. Bus i
P,=0.M,=0,D,=0,Q;=0 for load bus ¢
0=16,.0,..6,]" v=[.v,,-- .V, ]
C(0,,8,,V,): constant determined by the initial

T

conditions

In the above equation, it is noted that all of the integral
terms are path dependent, which are difficult to deal
without appropriate assumptions. For practical applications,
one can eliminate the path dependency by assuming
constant mechanical inputs, constant loads, and lossless
transmission system. It is noted that a useful and practical
energy function can be derived by equivalent system
technique under assumption of constant R/X ratio [10].
However, we will keep path dependency in the energy
integral for rigorous energy analysis from the theoretical
point of view.

As mentioned earlier, the fact that the above energy
integral should always be zero implies the energy
conservation law in the EMM for a power system. By
taking account dV, =0 for the voltage-controlled buses, a

structure-preserved energy function can be easily obtained
by removing the time integral term in (8).

ml N 1 IN
E=Y-Mw*+ —~—BV*——Y BVV.cosé,
$twor S o iSames,

+J, Gv;d, + ﬁ G, [ (ViV,c0s8,d6 +V,sin6,dV, )
J#i

) . ¥°¥
~ |, P.df,+ [ P.d6+, Ivvadef}

The above energy function is the same given in a text
book by Fouad and Vittal [16].

From (8), it can be shown that the energy integral has an
alternative expression as follows

E® = Ey)- ([ Dwldr) (10)

By using the above equation, the semi-negativeness of
the time derivative of the energy function(9) can be easily
proven.

3. Physical Interpretations of Potential Energy
Terms in Power Transfer Systems

The potential energy in (9) can be interpreted as the
energy stored in the line susceptances and the line losses
due to the line conductances which are inevitably required
for power transfer. This can be explained by the
mechanical analogy of the electric power transfer system.

Consider the following mechanical power transfer system
composed of a simple rigid rod. It is assumed that the rigid
rod is rotating with constant velocity ¢, to transfer the

mechanical torque 7, from node i to node j.

a=0+6, 1\ O 0, aj=w;zl+ej
Q= ] U

Fig. 5 Rigid Rod Model

When input torque 7, is applied to the rod, the angle
difference between ¢, and a, should be increased

proportional to the power transfer to the load. This makes
some potential energy charged at the rod. Let K, be a

twisting constant like as a spring constant of a spring, then
we can obtain the following energy balance equation from
the energy conservation law.

6; 6, 6y
.[e,o T.da, - .‘.e,o Tdo; = -[9,']0 K (o —o))d(o; —ar)) (an
where do, =w,dt +d6,»

da; =do, (12)

do; =w,dt+d8;, o;=0;—0; =06,
With the relationship in (12), (11) can be rewritten as

"I T o+ [T do.— [ T, a6
J“o( mi 11y t+J.5m mi i_'[;ju Ut (13)

8y
= jﬁ K,0,d6,

In the case where many rods are connected, the total
energy should satisfy the following equation:

1 51 5]
Y J:O (T, ~T)odt +Y J‘a’ﬂ T,.d6, - ZLIO 1,49, (14)

8
= ZLW K,6,d0,

Without loss of generality, it can be assumed that the
system be in the steady state in the macro-scopic sense
with negligible rod inertia, i.e. the transients related to the
rod inertia be negligible. This assumption corresponds to
the assumption of stator/network transients being
negligible in the electric power systems [15]. Under this
assumption, it must hold

T, =T,

As aresult, (14) reduces to
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: , 1
ZJSDTmidei—ZJ;OTLjde =2.£Kijei]2_ (15)

In the EMM of the power system, the transmission line
is considered as an ideal rod with mass zero. This
guarantees that 7 =T, equivalently I,=-1I, in the

steady state of power system. Since the rod rotates with
angular velocity @, , we have the following power

equation by multiplying @, to the both sides of (15).

, : |
Y[, T.@d6, -3 | T0d0, =3 Kof; 19

By using the mechanical analogy [11], the above
equation corresponds to the following equation for the
electric power transfer system.

i ; 1
ZJ.:uP'"ide"—z-[:o PLfde/:zawoL.lezj (17)

where L,.j = Kij

It should be noted that the right side of (17) is the
potential energy stored at the line inductance in the electric
power system, which indicates that it is necessary to charge
some potential energy in the line inductance in order to
transfer electric power through the transmission line. The
electric transmission line can be represented by the w-
equivalent circuit as shown in Fig. 6. Each transmission
line in Fig. 6(b) is correspondent to the rigid rod in Fig. 5
by the mechanical analogy.

v, v,
R iX
-

(a) Transmission Line Model
v, —jb, A

2228 !

1,08 0
T T

(b) Equivalent Admittance Model
Fig. 6 The n-equivalent Circuit of Power Transmission Line

For the multibus power systems, the conventional energy
function gives the following potential energy associated
with the line susceptances and shunt capacitances.

E =li[b?"— ib..]\/z—i iV.V.b..cosO.. (18)
Py 2 p i ij i ity ij

j=1, i i=l j=i+l

where p _pst _ ib” 19)
ii i i

J=1,j#

B.=b. (20)

[ i

With the relationships (19) and (20), the potential energy
in (18) can be transformed into the following form.

1 N N 1 u shyr2
E, :52 Db,V ~2VV, cosb, +Vj2)+52b,- Vi

i=l jitl i=l

_i ili‘b v, *V)r*ilmelz (1)
= o2 b; VARSI 258,

_ N Nll. P2 Nl -

_Z'Zillz% ] +§2b,- \Z

where 15 = jb;(V,=V))

The above equation shows that the energy terms
associated with the line susceptance can be represented by
w, times of the energy stored in the corresponding

elements, which is inevitably required for the power
transfer as mentioned with (17) before. Therefore, the
physical meaning of the potential energy terms in (18) can
be interpreted as the energy stored in the susceptances or
capacitances.

On the other hand, the energy function (9) includes the
conductance-related potential energy, which is rather too
complicate to make out some physical meaning of the
energy terms. However, it can be roughly understood in the
same context that the conductance-related potential energy
represents the integration of the loss power dissipated by
the conductances with respect to the mean rotating angle.
This loss power can be interpreted as a potential energy
which is inevitably required to support steady state electric
power transfer through the parallel conductances as shown
in Fig. 6. Therefore, the conductance-related energy in (9)
has the properties of the potential energy. Here, it should be
noted that the Rayleigh dissipation function has no relation
with the conductance-associated energy terms in (9), but it
has some relations with generator damping. The generator
damping does not concern about the steady state power
transfer. For example, any damping loss is not necessarily
required to support the steady state power transfer going
out from a generator. Therefore, the energy due to the
damping loss has no relation with the potential energy. It is
mere energy dissipation, which means that a Rayleigh
dissipation function should be introduced to consider it.
There have been a lot of questions arising about the
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transfer conductance-related potential energy even though
a well-defined energy function can be developed to reflect
the transfer conductances under some assumptions
[9,10,14].

Example
It is well known that there exists an energy function for a

two-bus power systems with lossy transmission lines [9,10].

A well-defined energy function can be easily constructed
as given in (22) with the consideration of transfer
conductances for a two-machine system for the uniform
damping case[10]. This example shows that the transfer
conductance produces potential energy terms in steady
state power transfer analysis.

1 G*Y1
E =5Ma)2 +B[1+?IEVZ —EVcos(S —9))— P,(6-6,) (22)

v
0

G G G
+(PL -5 0 )(9 —90)+EJQG¢1’5 +(QL +5F )logv

vZe

P+ jg,

Fig. 7 Two-Bus System with Transmission Loss

The above discussions may give some answer about
'‘why the energy dissipation element has a potential energy
in power transfer systems'. Consequently, the transfer-
conductance-related potential energy can be considered to
be just normal potential energy in power transfer systems.

4. Energy-Based Power System Analysis

Energy-based system analysis has been preferred so long
by the system engineers since it provides a systematic
procedure to set up the system dynamic equations with the
use of energy functions. The energy function is a scalar
function given by the total sum of the energy stored in
system elements, most of which are decoupled of others.
This provides great advantage in handling the energy
functions. In the previous section, the energy integral has
been successfully derived for the electric power system.
The energy integral is just the same as the mechanical
energy concerned to its mechanical analogy system.
Consequently, the electric power system can be analyzed in
the same manner as a mechanical system. Lagrange's
equation is a well known method to analyze the mechanical
system based on the system energy [15]. This study
attempts to apply Lagrange's equations to power system
analysis.

Define the kinetic energy T and the potential energy V

for the electric power system as follows:

P 23
T=Y-Mw (23)
22 L)
v=Y —lB..V.Z—ilB..VV. cos6,

- 2 i j=i2 [/ i (24)

d 2 (8;.V) .

+. [ Gvia8 +Y G, [0 W, cos6,d6.+V, sin6,aV,)
0 j?i 04750

~ [} Pado v, [ P8+, j:%dv}

Then, the Lagrangean is defined by
L=T-V (25)

Define a Rayleigh dissipation function associated with
the generator damping as follows [17]:

HEE S 26
F—OZD,.a),. (26)

<~ i=1

The power system dynamics can be described by
Lagrange's equation as follows:

d oL oL OoF
R )
dt oq; dq; 9g;

(i=1---N) 27
For the EMM of the power system, (27) gives the power
system dynamic equations.

M0, + D w, _% =0 ie {generator buses} (28)

i

_oL =0 i e {load buses} (29)
a0,

oL _ (30)
v,

0 i e {voltage uncontrolled buses}

In the above equations, it is required to pay special
attention to evaluation of the partial differential. A
comment on the partial differential rules is given in
Appendix. By applying the proposed method, one can
easily check the above equations provide just the power
system swing equations including the real and reactive
power balance equations. The power flow equations can be
easily derived from the energy function in (9). The power
flow solutions are given by the equilibrium points of the
system, and the equilibrium condition of the system can be
shortly described by using the potential energy V as
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follows:

1%
Yoo (3D
oq

The above equation can be rewritten as

%:o ie {2, n} (32)
v _ 0 i€ {voltage uncontrolled bus} (33)

v,

It can be also easily checked that (32) and (33) are the
same as the real and reactive power balance equations
respectively. This study shows that Lagrange’s equations
can be well applied to power system analysis, providing
systematic procedures to set up the power system dynamic
equations and additionally the load flow equations for the
static solutions with the proposed energy integral of power
systems. This means that the energy integral has all
information of power system dynamics in both static and
dynamic states. The proposed approach enables us to
utilize well-developed theories and mathematical tools for
the analysis of power system dynamics, providing an easy
access to power system analysis for general system
engineers.

Example
Consider the following 3-bus system, in which the

network is represented by Ypyg in the form of

Ysus =Gpys +iBgus -

1
By 25 2
Ygus 7
) v,/86,
| o
Ey 25,
Py +jQr Ps+JQis

Fig. 8 3-bus Sample System

We will assume that Generator internal voltages Eg,

and E;, are kept to be constant during the time period in
concern, and that Ygyg is calculated after removing all

the generator terminal buses for the post fault period.
Then, the kinetic and the potential energies are given by

T= %M]cof +%M2a)§ (34)

1
V= ~51333V32 ~EEg,B, cos(8, - 8,)

2
- Y EViB,, cos(8, -8,) + [G,,V1de,
= (35
+G, [Eg,Eq, cos(8, —8,)(d8, +d3,)
Boiirie ot )
i=l Gi i 3 3
- Pm\(6| - 5\0) - sz(az - 620) + PL2(62 - 50)

Ui gv,
V3

+P ., —630)+I

The Lagrangian function can be organized by (25),
having only 4 variables é,,5,,6; and V;. With use of the

above energy function and Rayleigh function (26),
Lagrange’s equation yields 4 equations as follows:

M@, +E; E.,B,, sin(d, —8,) +E;, V,B,,sin(8, - 6,)
+G,Eg Eg, cos(d, —8,)+G,E,, V, cos(5, —6,)
-P,+Dw =0

for q,=6, (36.a)

M,a@, +E E;,B,,sin(8, —8,)+E,,V,B,, sin(d, - 6,)
+G,Eq Eg, cos(8, ~6,)+G,E, V; cos(, —6,)
—P_+P,+D,m, =0 for g =5, (36.b)

2 2
~Y E.V,B,sin(8, —0,)+ G,V + ¥ G E.V,cos(5, - 6,)+ P, =0
i=l i=1

for g =86, (36.0

2
~ BV, ~ Y E, (B, cos(6, ~6,)~G,,sin(8, ~6))}+ % =0
i=] 3

for g =V, (36.d)

The first two of the equations are just the same as the
swing equations for generators G, and G,, and the last
two of them are just the same as the power flow equations
at bus 3. Moreover it should be noted that the above
equations constitute a complete set of load flow equations
when @, =0 and @, =0 for all generators.

This example illustrates that the energy function has all
information about the power system and that the energy-
based method provides a systematic approach to analysis
of complicate power systems with use of the energy
function which can be easily obtained.

5. Conclusion

A new approach to energy-based power system analysis
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has been proposed by using an energy integral for
multimachine power systems. On the basis of mechanical
analogy, an exact energy integral expression is derived for
lossy multi-bus systems through rigorous energy-based
analysis. A simple mechanical rod model is introduced to
make out the physical meanings of potential energy terms
associated with transfer conductances as well as transfer
susceptances. Finally, an approach to energy-based power
system analysis has been proposed with the application of
Lagrange's equations. This provides systematic procedures
to set up the power system dynamic equations and
additionally the load flow equations for the static solutions
with the proposed energy integral of power systems. The
proposed approach enables us to utilize well-developed
theories and mathematical tools for the analysis of power
system dynamics, guaranteeing an easy access to power
system analysis for general system engineers.

Appendix: Partial Derivative with the
Consideration Integral Dummy Variables

Consider the partial differentiation of F(x, y) which is
given by the path dependent integral as follows:

Fay = [0 (et feydy)  AD

First, we will examine the partial differential properties
the integral function by distinguishing the dummy
variables. The exact expression of (A.1) should be given by

Feoy= [ (AEmdE + f&man (A2

By using (A.2), we can easily calculate the partial
derivatives as follows

F(x,y)= %F (x,9)= fi(x,y) (A3)

F,(xy)= %F(x, M=) (A4)

The above result can easily be checked by comparing the
form with the following line integral formula.

(%,

)
Fy)= [ [Fxy)ds+ F,(x,y)dy]

We can calculate the time derivative of F(x,y) in two

ways: one is the method by changing the line integral into
an integral with respect to time, and the other is using the

differential chain rule. We can check here if both of the
methods produce the same results. The integral in (A.1)
can be changed into a time integral as follows:

_r dx dy (A.5)
F(y)=[ LA 9=+ 6 ) e
This directly gives the following time derivative
d dx dy (A.6)
“F = = 27 .
(x,)’) fl(xv.y) dt+f2(x’y)dt

dt

By using the differential chain rule with (A.3) and (A.4),
we can alternatively obtain the time derivative of F(x,y)

which just same as given in (A.6). This makes us confirm
the exactness of mathematics regarding the differential
rules.

For a special case, we will consider the following
integral function

G(x,y) =, ij;) g(x, )dx (A7)

where y varies with x along the path ¢
The differential formulae in (A.3) and (A.4) provide the
partial derivatives of G(x,y).

aiG(x, » =800y
X

0
~G(x,y)=0
3 (x,y)

(A.8)

Here, it should be noted that the following calculation is
erroneous unless y is independent of integral path c.

d x
-Gy # | —-g(x, y)dx
. I3

In the above equation, the equality holds only for the
case where y is a constant parameter independent of
integral path c¢. The above discussions can be easily
extended to general integral functions with multivariables.
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