• Title/Summary/Keyword: energy window

Search Result 693, Processing Time 0.027 seconds

Fast Quadtree Based Normalized Cross Correlation Method for Fractal Video Compression using FFT

  • Chaudhari, R.E.;Dhok, S.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.519-528
    • /
    • 2016
  • In order to achieve fast computational speed with good visual quality of output video, we propose a frequency domain based new fractal video compression scheme. Normalized cross correlation is used to find the structural self similar domain block for the input range block. To increase the searching speed, cross correlation is implemented in the frequency domain using FFT with one computational operation for all the domain blocks instead of individual block wise calculations. The encoding time is further minimized by applying rotation and reflection DFT properties to the IFFT of zero padded range blocks. The energy of overlap small size domain blocks is pre-computed for the entire reference frame and retaining the energies of the overlapped search window portion of previous adjacent block. Quadtree decompositions are obtained by using domain block motion compensated prediction error as a threshold to control the further partitions of the block. It provides a better level of adaption to the scene contents than fixed block size approach. The result shows that, on average, the proposed method can raise the encoding speed by 48.8 % and 90 % higher than NHEXS and CPM/NCIM algorithms respectively. The compression ratio and PSNR of the proposed method is increased by 15.41 and 0.89 dB higher than that of NHEXS on average. For low bit rate videos, the proposed algorithm achieve the high compression ratio above 120 with more than 31 dB PSNR.

Experimental Study on Manufacturing of Insulation Vacuum Glazing and Measurement of the Thermal Conductance (단열 진공유리의 제작 및 열전달계수 측정에 관한 실험적 연구)

  • Lee Bo-Hwa;Yoon Il-Seob;Kwak Ho-Sang;Song Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.772-779
    • /
    • 2006
  • Window is a critical component in the design of energy-efficient buildings. To minimize the heat loss, insulation performance of the glazing has to be improved. Manufacturing of vacuum glazing has been motivated by the possibility of making windows of very good thermal insulation properties for such applications. It is made by maintaining vacuum in the gap between two glass panes. Pillars are placed between them to withstand the atmospheric pressure. Edge covers are applied to reduce conduction through the edge. Accurate measurements have been made of the radiative heat transfer, the pillar conduction and the gas conduction using a guarded hot plate apparatus. Vacuum glazing is found to have low thermal conductance roughly below $1W/m^2K$. Among the heat transfer modes of residual gas conduction, conduction through support pillar and the radiative heat transfer between the glass panes, the last one is the most dominant to the overall thermal conductance. Vacuum glazing using very low emittance AI-coated glass has an overall thermal conductance of about $0.7W/m^2K$.

Heat Transfer Analysis of High Temperature Dish-type Solar Receiver with the Variation of Porous Material (다공성 매질의 형상 변화에 따른 접시형 고온 태양열 흡수기의 열성능 평가)

  • Lee, Ju-han;Seo, Joo-Hyun;Oh, Sang-June;Lee, Jin-Gyu;Cho, Hyun-Seok;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.238-244
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Using the numerical model, the heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

On the Measurement of the Depth and Distance from the Defocused Imagesusing the Regularization Method (비초점화 영상에서 정칙화법을 이용한 깊이 및 거리 계측)

  • 차국찬;김종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.886-898
    • /
    • 1995
  • One of the ways to measure the distance in the computer vision is to use the focus and defocus. There are two methods in this way. The first method is caculating the distance from the focused images in a point (MMDFP: the method measuring the distance to the focal plane). The second method is to measure the distance from the difference of the camera parameters, in other words, the apertures of the focal planes, of two images with having the different parameters (MMDCI: the method to measure the distance by comparing two images). The problem of the existing methods in MMDFP is to decide the thresholding vaue on detecting the most optimally focused object in the defocused image. In this case, it could be solved by comparing only the error energy in 3x3 window between two images. In MMDCI, the difficulty is the influence of the deflection effect. Therefor, to minimize its influence, we utilize two differently focused images instead of different aperture images in this paper. At the first, the amount of defocusing between two images is measured through the introduction of regularization and then the distance from the camera to the objects is caculated by the new equation measuring the distance. In the results of simulation, we see the fact to be able to measure the distance from two differently defocused images, and for our approach to be robuster than the method using the different aperture in the noisy image.

  • PDF

A Study on Application of the Photo Detector for Electromagnetic Fuel Injection System of DI Diesel Engine (직분식 디젤기관 전자분사계의 광검출기 적용에 관한 연구)

  • Ra, Jin-Hong;Ahn, Soo-Kil
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.38-46
    • /
    • 1999
  • Increasing stringent emissions legislation and requirement of more effective energy used for diesel engine demand the fine control of the fuel injection system. Recently, the electromagnetic fuel injection control system for diesel engine is tried to realize the optimum diesel combustion by the feel back sensing as optical signal of combustion flame. The photo detectors were made for the feed back signal of electromagnetic fuel injection control for small DI diesel engine. Their abilities to detect defining combustion events were examined. By evaluating test results, it was shown that the wider acceptable optical range design of optical probe window face, and selection of installation position and installation method of detector were important point for improving sensing ability. The detector was shown to detect start and end of diffused combustion and maximum point of flame intensity impossible for pressure sensor, and also shown that the maximum point of flame intensity was 75% of accumulated heat release point within the experimental conditions.

  • PDF

A Study on Fuzzy Control Simulator of Naturally Circulated Boiler (자연 순환식보일러의 퍼지제어 모사기 개발에 관한 연구)

  • Kim, Kwang-Sun;Kim, Sam-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.543-554
    • /
    • 2000
  • The engineering equations, which have been used in many engineering companies, were employed for the dynamic modelling part in order to develop the naturally circulated boiler simulator. The fuzzy algorithm, which is similar to the algorithm of making decision by the human being, was developed for the boiler simulator controller and its simulated variables were compared with those of classical PID simulations to verify the stability and the effectiveness of fuzzy controller. The simulator is for the naturally circulated boiler and the main components are the furnace, the drum, the super heater, and the economizer. The combustion and thermal radiation dominant equations were used within the furnace and the mass conservation and the energy rate balance equations were employed for the drum part. The heat transfer rates were calculated using the logarithmic mean temperature differences both for the super heater and for the economizer. The simulations are very useful to understand the boiler operations and the engineering design of the main components. The main program was developed under the PC window condition by linking the fuzzy controller to the main boiler program using the Visual C++ language. The various operational conditions such as the abrupt changes of load, the changes of water supply pipes and the diameter of drum were simulated.

Study on Noise Reduction of an Air Conditioner through Modification of Axial Flow Fans and Shrouds (축류팬 및 슈라우드 개선을 통한 공조기 저소음화에 대한 연구)

  • Kim, Chang-Joon;Yoon, Hong-Yeol;Jung, Young-Gyu;Park, Young-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.380-387
    • /
    • 2000
  • In this paper, a successful result of modification of an axial flow fan and a shroud for noise reduction of a window type air conditioner is presented especially in order to verify the importance of blade shape improvement and the searching for the optimal shape of shrouds. Effective ways to work out the result as mentioned above are to make the tip of the blade varied in thickness and to have special shapes. From the viewpoint of the shape in a shroud, several cases were examined and the particular value of a design parameter of the shroud was acquired to get the best noise reduction of an air conditioner. Through the application of the methods, the air conditioner became less noisy by 4.5 dB(A) in terms of air-borne noise produced only by the axial flow fan and consumed less energy by 20.9% compared to the current one.

  • PDF

Near-infrared Spectroscopy of Young Stellar Objects around the Supernova Remnant G54.1+0.3

  • Kim, Hyun-Jeong;Koo, Bon-Chul;Moon, Dae-Sik;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.68.2-68.2
    • /
    • 2010
  • We present near-infrared (NIR) spectra of 6 young stellar objects (YSOs) around the supernova remnant G54.1+0.3 obtained with TripleSpec, a slit-based NIR cross-dispersion echelle spectrograph on th 5-m Palomar Hale telescope covering the entire NIR atmospheric window of 1-2.4 micron. These YSOs, whose formation was possibly triggered by the progenitor of G54.1+0.3, show significant mid-infrared (MIR) excess and have been proposed to be late O- and early B-type YSOs based on their spectral energy distribution. Our TripleSpec observations reveal the existence of strong H and He I lines, consistent with the previous interpretation of their spectral types, while the absence of Br-gamma emission line indicates that the YSOs do not have a nearby circumstellar disk. We discuss the relation between these YSOs and G54.1+0.3 based on the TripleSpec data and previous photometric data as well.

  • PDF

A Front-side Dry-Etched Thermopile Detector with 3-5 $\mu m$ Infrared Absorber and Its Application to Novel NDIR $CO_2$ Gas Sensors (3-5 $\mu m$ 적외선 흡수체를 가진 전면 건식 식각된 서모파일과 NDIR $CO_2$ 가스 센서의 응용)

  • Yoo, Kum-Pyo;Kim, Si-Dong;Choi, Woo-Seok;Singh, V.R.;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1470-1471
    • /
    • 2008
  • We present a front-side micromachined thermopile with high sensitivity in the 3-5${\mu}m$ window, and discuss its application to a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. The micromachined thermopile shows a measured sensitivity of 30 mV/W and a $D^*$ of $0.3{\times}10^8cm^{\surd}Hz/W$. Using this newly fabricated thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

A Study on a Virtual Object Exploration Using a Force Reflection Virtual Teleoperation System (힘 반향 가상원격조작 시스템을 이용한 가상 물체 탐색에 관한 연구)

  • Gwon, Hyeok-Jo;Kim, Gi-Ho;O, Jae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.891-898
    • /
    • 2001
  • This paper develops a master manipulator which can reflect a force from a slave manipulator effectively. It many have a big workspace, can represent a human operators manipulation perfectly, and is composed of a position control part, an orientation control part and an end effector control part. This paper also develops a graphic simulator using the Visual C++ and OpenGL in the Window operating system. It can be used to make a virtual slave manipulator and set a virtual working environment, and provide a visual information from a desired view point. A virtual teleoperation system is developed by connecting the developed master manipulator to the graphic simulator using an interfacing hardware bilaterally. It is used for performing a virtual object exploration experiment. In the experiment, two virtual objects are used. They are virtual wall and virtual hexahedron which have 0.7N/mm and 2.2 N/mm stiffness respectively. The experiments are performed under six different working conditions. The experiment results will show the effectiveness of the reflected force from the slave manipulator for improving the efficiency and stability of the teleoperation task.