• 제목/요약/키워드: energy window

검색결과 690건 처리시간 0.031초

Cu(In,Ga)Se2 박막의 저온 성장 및 NaF 후속처리를 통한 태양전지 셀 특성 연구 (Low-temperature Growth of Cu(In,Ga)Se2 Thin Film and NaF Post Deposition Treatment for Cu(In,Ga)Se2 Solar Cells)

  • 김승태;정광선;윤재호;박병국;안병태
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.21-26
    • /
    • 2015
  • High efficiency $Cu(In,Ga)Se_2$ solar cells are generally prepared above $500^{\circ}C$. Lowering the process temperature can allow wider selection of substrate material and process window. In this paper, the three-stage co-evaporation process widely used to grow CIGS thin film at high temperature was modified to reduce the maximum substrate temperature. Below $400^{\circ}C$ the CIGS films show poor crystal growth and lower solar cell performance, in spite of external Na doping by NaF. As a new approach, Cu source instead of Cu with Se in the second stage was applied on the $(In,Ga)_2Se_3$ precursor at $400^{\circ}C$ and achieved a better crystal growth. The distribution of Ga in the films produce by new method were investigated and solar cells were fabricated using these films.

근적외선 반사 박막 특성 연구 (Study on characteristics of thin films for reflection of near infrared light)

  • 정연길;박현식
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.4121-4124
    • /
    • 2015
  • 에너지 절감 유리창에서는 근적외선 차단 기능이 요구되고 있다. 본 연구에서는 근적외선 반사를 위한 광학 박막의 설계, 제작 및 광학적 특성이 연구 되었다. 광학 박막은 저굴절률막과 고굴절률막의 적층 박막 구조로 설계하였다. 설계구조에 따라 RF 스퍼터링 방법을 이용한 $SiO_2$$TiO_2$ 박막의 증착 실험이 수행되었고 파워에 따른 증착 조건 파라미터에 따라서 제작된 스퍼터링 박막의 특성이 분광타원기, 원자현미경, 분광기로 분석되었다. 적층박막 구조의 설계는 $SiO_2$$TiO_2$의 고굴절률 박막/저굴절률 박막/고굴절률 박막의 적층 구조로서 근적외선 차단 다층막이 설계되었고 시뮬레이션 되었다. 시뮬레이션 결과 파장대역 930nm에서 1682nm의 범위에서 반사율30%이상이 관찰되었다. 시뮬레이션 결과를 토대로 제작된 삼층 구조의 박막은 파장 대역이 930nm에서 1525nm범위 대역에서 반값 전폭의 반사율 33%이상을 구현할 수 있었다.

TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 1:해석적 연구) (Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method (Part 1:Analytical Study))

  • 정명철;송정원;송진규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.141-147
    • /
    • 2018
  • 본 연구에서는 TS 내진보강공법의 내진보강 효과를 검증 할 목적으로 TS 댐퍼(Tension Spring-Damper)를 설치한 철근콘크리트 골조를 대상으로 한 반복 주기하중 재하 실험을 수행 하였다. 실험체는 기준 실험체인 무보강 골조 실험체와 3개의 보강 골조 실험체의 총 4개이며, 실험의 변수는 댐퍼 설치 여부, 댐퍼의 형상 및 시공방법이다. 그 결과 창호 내부 삽입 형식의 시공방법이 강도와 강성의 측면에서 2배가량, 외부 부착형식의 시공 방법이 에너지 소산의 측면에서 2배가량의 성능 향상을 나타내어 TS 내진보강공법이 현장 적용성과 내진보강 효과가 우수한 공법임을 확인 할 수 있었다.

갑상선섭취율검사시(甲狀腺攝取率檢査時) 측정조건(測定條件)에 관(關)한 조사연구(調査硏究) (Study on Measurements in Thyroid Uptake Rate Test)

  • 경광현;김화곤
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제4권1호
    • /
    • pp.55-62
    • /
    • 1981
  • This study was conducted, during the period of 20-30th, July in 1981, to survey measurement methods in thyroid uptake rate test in Seoul city. The results were summarized as follows: 1. For the great part of nuclear medcine department, a mount of radioiodine($^{131}I$) administrated to the patients was $50-100{\mu}Ci$ in thyroid uptake rate test. 2. Distribution of scintillation, counter with crystal size of $1\frac{1}{2}inch$ was 43%, 3inch(22%), 2.5inch(14%) and $2\frac{1}{2}inch$ was 7% in RAI uptake rate test. 3. When RAI uptake rate test was performed, distribution of collimator in use was flat field type collimator(78%) in general and cylindrical type collimator was 22%. 4. High voltage applied to the P-M tube was $900{\sim}1000V$(50%) and most units provided $3{\sim}15%$ of the window range for the $^{131}I$ peak $\gamma-ray$ energy. 5. Distribution on the use of neck phantom for measurements standard solution was 57% and distribution of b filter in use for room background counts and extrathyroidal tissue was 43% and 50%. 6. The distance between the counter and the source was 25cm(58%) in measuring radioactivity of standard solution, thyroid tissue and background radioactivity count. 7. The early uptake measurements(2, 4, 6 hours) are done after administration of the radioiodine dose and also 24-hour and 48-hour uptake measurements are done in routine test.

  • PDF

Bulk and Surface Reactions of Atomic H with Crystalline Si(100)

  • 조삼근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.175-175
    • /
    • 2000
  • Si(100) surfaces were exposed to gas-phase thermal-energy hydrogen atoms, H(g). We find that thermal H(g) atoms etch, amorphize, or penetrate into the crystalline silicon substrate, depending on the employed Ts range during the H(g) exposure. We find that etching is enhanced as Ts is lowered in the 300-700K range, while amorphous silicon hydride (a-Si:H) formation dominates at a Ts below 300K. This result was well explained by the fact that formation of the etching precursor, SiHx(a), and amorphization are both facilitated by a lower Ts, whereas the final step for etching, SiH3(a) + H(g) longrightarrow SiH3(g), is suppressed at a lower Ts. we also find that direct absorption of H(g) by the crystalline bulk of Si(100) substrate occurs within a narrow Ts window of 420-530K. The bulk-absorbed hydrogen evolved out molecularly from Si(100) at a Ts 80-120K higher than that for surface monohydride phase ($\beta$1) in temperature-programmed desorption. This bulk-phase H uptake increased with increasing H(g) exposure without saturation within our experimental limits. Direct absorption of H(g) into the bulk lattice occurs only when the surface is atomically roughened by surface etching. While pre-adsorbed hydrogen atoms on the surface, H(a), were readily abstracted and replaced by D(g), the H atoms previously absorbed in the crystalline bulk were also nearly all depleted, albeit at a much lower rate, by a subsequent D(g) at the peak temperature in TPD from the substrate sequentially treated with H(g) and D(g), together with a gas phase-like H2 Raman frequency of 4160cm-1, will be presented.

  • PDF

Separating nanocluster Si formation and Er activation in nanocluster-Si sensitized Er luminescence

  • 김인용;신중훈;김경중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.109-109
    • /
    • 2010
  • $Er^{3+}$ ion shows a stable and efficient luminescence at 1.54mm due to its $^4I_{13/2}\;{\rightarrow}\;^4I_{15/2}$ intra-4f transition. As this corresponds to the low-loss window of silica-based optical fibers, Er-based light sources have become a mainstay of the long-distance telecom. In most telecom applications, $Er^{3+}$ ions are excited via resonant optical pumping. However, if nanocluster-Si (nc-Si) are co-doped with $Er^{3+}$, $Er^{3+}$ can be excited via energy transfer from excited electrical carriers in the nc-Si as well. This combines the broad, strong absorption band of nc-Si with narrow, stable emission spectra of $Er^{3+}$ to allow top-pumping with off-resonant, low-cost broadband light sources as well as electrical pumping. A widely used method to achieve nc-Si sensitization of $Er^{3+}$ is high-temperature annealing of Er-doped, non-stoichiometric amorphous thin film with excess Si (e.g.,silicon-rich silicon oxide(SRSO)) to precipitate nc-Si and optically activate $Er^{3+}$ at the same time. Unfortunately, such precipitation and growth of nc-Si into Er-doped oxide matrix can lead to $Er^{3+}$ clustering away from nc-Si at anneal temperatures much lower than ${\sim}1000^{\circ}C$ that is necessary for full optical activation of $Er^{3+}$ in $SiO_2$. Recently, silicon-rich silicon nitride (SRSN) was reported to be a promising alternative to SRSO that can overcome this problem of Er clustering. But as nc-Si formation and optical activation $Er^{3+}$ remain linked in Er-doped SRSN, it is not clear which mechanism is responsible for the observed improvement. In this paper, we report on investigating the effect of separating the nc-Si formation and $Er^{3+}$ activation by using hetero-multilayers that consist of nm-thin SRSO or SRSN sensitizing layers with Er-doped $SiO_2$ or $Si_3N_4$ luminescing layers.

  • PDF

Hydrogen Absorption by Crystalline Semiconductors: Si(100), (110) and (111)

  • 정민복;조삼근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.383-383
    • /
    • 2010
  • Gas-phase hydrogen atoms create a variety of chemical and physical phenomena on Si surfaces: adsorption, abstraction of pre-adsorbed H, Si etching, Si amorphization, and penetration into the bulk lattice. Thermal desorption/evolution analyses exhibited three distinct peaks, including one from the crystalline bulk. It was previously found that thermal-energy gaseous H(g) atoms penetrate into the Si(100) crystalline bulk within a narrow substrate temperature window(centered at ~460K) and remain trapped in the bulk lattice before evolving out at a temperature as high as ~900K. Developing and sustaining atomic-scale surface roughness, by H-induced silicon etching, is a prerequisite for H absorption and determines the $T_s$ windows. Issues on the H(g) absorption to be further clarified are: (1) the role of the detailed atomic surface structure, together with other experimental conditions, (2) the particular physical lattice sites occupied by, and (3) the chemical nature of, absorbed H(g) atoms. This work has investigated and compared the thermal H(g) atom absorptivity of Si(100), Si(111) and Si(110) samples in detail by using the temperature programmed desorption mass spectrometry (TPD-MS). Due to the differences in the atomic structures of, and in the facility of creating atom-scale etch pits on, Si(100), (100) and (110) surfaces, the H-absorption efficiency was found to be larger in the order of Si(100) > Si(111) > Si(110) with a relative ratio of 1 : 0.22 : 0.045. This intriguing result was interpreted in terms of the atomic-scale surface roughening and kinetic competition among H(g) adsorption, H(a)-by-H(g) abstraction, $SiH_3(a)$-by-H(g) etching, and H(g) penetraion into the crystalline silicon bulk.

  • PDF

Optical and Electrical Properties of InAs Sub-Monolayer Quantum Dot Solar Cell

  • 한임식;박동우;노삼규;김종수;김진수;김준오
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.196.2-196.2
    • /
    • 2013
  • 본 연구에서는 분자선 에피택시 (MBE)법으로 성장된 InAs submonolayer quantum dot (SML-QD)을 태양전지에 응용하여 광학 및 전기적 특성을 평가하였다. 본 연구에서 사용된 양자점 태양전지(quantum dot solar cell, QDSC)의 구조는 n+-GaAs 기판 위에 n+-GaAs buffer와 n-GaAs base layer를 차례로 성장 한 후, 활성영역에 InAs/InGaAs SML-QD와 n-GaAs spacer layer를 8주기 형성하였다. 그 위에 p+-GaAs emitter, p+-AlGaAs window layer를 성장하고 ohmic contact을 위하여 p+-GaAs 를 성장하였다. SML-QD 구조의 두께는 0.3 ML 이며, 이때 SML-QD의 적층수를 4 stacks 으로 고정하였다. SML-QD 와의 비교를 위하여 2.0 ML크기의 InAs자발 형성 양자점 태양전지(SK-QDSC)과 GaAs 단일 접합 태양전지 (reference-SC)를 동일한 성장조건에서 제작하였다. PL 측정 결과, 300 K에서 SML-QD의 발광 피크는 SK-QD 보다 고에너지에서 나타나는데(1.349 eV), 이것은 SML-QD가 SK-QD보다 작은 크기를 가지기 때문으로 사료된다. SML-QD는 single peak를 보이는 반면, SK-QD는 dual peaks (1.112 / 1.056 eV)을 확인하였다. SML-QD의 반치폭(full width at half maximum, FWHM)이 SK-QD에 비하여 작은 것으로 보아 SML-QD가 SK-QD보다 양자점 크기 분포의 균일도가 높은 것으로 해석된다. Illumination I-V 측정 결과, SML-QDSC의 개방 전압(VOC) 과 단락전류밀도(JSC)는 SK-QDSC의 값과 비교해 보면, 각각 47 mV와 0.88 mA/cm2만큼 증가하였다. 이는 SK-QD보다 상대적으로 작은 크기를 가진 SML-QD로 인해 VOC가 증가되었으며, SML-QD가 SK-QD 보다 태양광을 흡수할 수 있는 영역이 비교적 적지만, QD내에 존재하는 energy level에서 탈출 할 수 있는 확률이 더 높음으로써 JSC가 증가한 것으로 분석 된다.

  • PDF

Solid state electrochemical double layer capacitors with natural graphite and activated charcoal composite electrodes

  • Hansika, P.A.D.;Perera, K.S.;Vidanapathirana, K.P.;Zainudeen, U.L.
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.37-46
    • /
    • 2019
  • Electrochemical double layer capacitors (EDLCs) which are fabricated using carbon based electrodes have been emerging at an alarming rate to fulfill the energy demand in the present day world. Activated charcoal has been accepted as a very suitable candidate for electrodes but its cost is higher than natural graphite. Present study is about fabrication of EDLCs using composite electrodes with activated charcoal and Sri Lankan natural graphite as well as a gel polymer electrolyte which is identified as a suitable substitute for liquid electrolytes. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Galvanostatic Charge Discharge test were done to evaluate the performance of the fabricated EDLCs. Amount of activated charcoal and natural graphite plays a noticeable role on the capacity. 50 graphite : 40 AC : 10 PVdF showed the optimum single electrode specific capacity value of 15 F/g. Capacity is determined by the cycling rate as well as the potential window within which cycling is being done. Continuous cycling resulted an average single electrode specific capacity variation of 48 F/g - 16 F/g. Capacity fading was higher at the beginning. Later, it dropped noticeably. Initial discharge capacity drop under Galvanostatic Charge Discharge test was slightly fast but reached near stable upon continuous charge discharge process. It can be concluded that initially some agitation is required to reach the maturity. However, the results can be considered as encouraging to initiate studies on EDLCs using Sri Lankan natural graphite.

Pipeline defect detection with depth identification using PZT array and time-reversal method

  • Yang Xu;Mingzhang Luo;Guofeng Du
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.253-266
    • /
    • 2023
  • The time-reversal method is employed to improve the ability of pipeline defect detection, and a new approach of identifying the pipeline defect depth is proposed in this research. When the L(0,2) mode ultrasonic guided wave excited through a lead zirconate titinate (PZT) transduce array propagates along the pipeline with a defect, it will interact with the defect and be partially converted to flexural F(n, m) modes and longitudinal L(0,1) mode. Using a receiving PZT array attached axisymmetrically around the pipeline, the L(0,2) reflection signal as well as the mode conversion signals at the defect are obtained. An appropriate rectangle window is used to intercept the L(0,2) reflection signal and the mode conversion signals from the obtained direct detection signals. The intercepted signals are time reversed and re-excited in the pipeline again, result in the guided wave energy focusing on the pipeline defect, the L(0,2) reflection and the L(0,1) mode conversion signals being enhanced to a higher level, especially for the small defect in the early crack stage. Besides the L(0,2) reflection signal, the L(0,1) mode conversion signal also contains useful pipeline defect information. It is possible to identify the pipeline defect depth by monitoring the variation trend of L(0,2) and L(0,1) reflection coefficients. The finite element method (FEM) simulation and experiment results are given in the paper, the enhancement of pipeline defect reflection signals by time-reversal method is obvious, and the way to identify pipeline defect depth is demonstrated to be effective.