• Title/Summary/Keyword: energy storage properties

Search Result 575, Processing Time 0.032 seconds

Hydrogenation Properties of Mg-5 wt.% TiCr10Nbx (x=1,3,5) Composites by Mechanical Alloying Process (기계적 합금화법으로 제조된 Mg-5 wt.% TiCr10Nbx (x=1,3,5) 복합재료의 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.264-269
    • /
    • 2011
  • Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develope kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). $Mg-TiCr_{10}Nb$ systems were evaluated for hydrogen kinetics by Sievert's type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

In situ Electric-Field-Dependent X-Ray Diffraction Experiments for Ferroelectric Ceramics (강유전 세라믹의 전기장 인가에 따른 in situ X-선 회절 실험)

  • Choi, Jin San;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.431-438
    • /
    • 2022
  • In functional materials, in situ experimental techniques as a function of external stimulus (e.g., electric field, magnetic field, light, etc.) or changes in ambient environments (e.g., temperature, humidity, pressure, etc.) are highly essential for analyzing how the physical properties of target materials are activated/evolved by the given stimulation. In particular, in situ electric-field-dependent X-ray diffraction (XRD) measurements have been extensively utilized for understanding the underlying mechanisms of the emerging electromechanical responses to external electric field in various ferroelectric, piezoelectric, and electrostrictive materials. This tutorial article briefly introduces basic principles/key concepts of in situ electric-field-dependent XRD analysis using a lab-scale XRD machine. We anticipate that the in situ XRD method provides a practical tool to systematically identify/monitor a structural modification of various electromechanical materials driven by applying an external electric field.

Electrochemical Properties of Tin-Antimony Sulfide Nanocomposites Synthesized by Hydrothermal Method as Anode Materials for Sodium Ion Batteries (수열 합성법에 의해 제조된 주석-안티몬 황화물계 나노복합체 기반 나트륨이온전지용 음극의 전기화학적 특성)

  • So Hyeon Park;Su Hwan Jeong;Suyoon Eom;Sang Jun Lee;Joo-Hyung Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.545-552
    • /
    • 2022
  • Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.

A Study on the Alloy Design of High Capacity Ti-Based Metal Hydride for Ni/MH Rechargeable Battery (Ni/MH 2차 전지용 고용량 Ti계 수소저장합금의 설계에 관한 연구)

  • Lee, Han-Ho;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.19-28
    • /
    • 1996
  • Ti-Mn based hydrogen storage alloy were modified by substituting alloying elements such as Zr, V and Ni in order to design a high capacity MH electrode for Ni/MH rechargeable battery. When V was substituted in Ti-Mn binary system, the crystal structure was maintained as $Cl_4$ Laves phase at a composition of $Ti_{0.2}V_{0.4}Mn_{0.4}$ and $Ti_{0.4}V_{0.2}Mn_{0.4}$ and equilibrium pressure decreased below 1 atm without decreasing hydrogen storage capacity considerably. It was found that Ni should be included in Ti-V-Mn alloy in order to hydrogenate it electrochemically in KOH electrolyte. But substitution of Ni for Mn in Ti-V-Mn system caused the increase of equilibrium pressure above 1atm and decrease of hydrogen storage capacity. Zr was able to increase the reversible hydrogen storage capacity of Ti-V-Mn-Ni alloy without considerable change of hydrogenation properties. The electrochemical discharge capacity of Ti-Zr-V-Mn-Ni system were in the range of 350 - 464mAh/g and among them $Ti_{0.8}Zr_{0.2}V_{0.5}Mn_{0.5}Ni_{1.0}$ alloy had $Cl_4$ Laves single phase and very high electrochemical discharge capacity of 464mAh/g.

  • PDF

Properties of Pulsed Photostimulated Luminescence and Thermoluminescence for Detection of Gamma-Irradiated Teas during Storage

  • Kausar, Tusneem;Kim, Byeong-Keun;Yang, Jae-Seung;Byun, Myung-Woo;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.227-231
    • /
    • 2004
  • Green, black and oolong teas were irradiated by $^{60}$ Co-gamma rays (0~10 kGy) and were investigated for detection of irradiation treatment using pulsed photostimulated luminescence (PPSL) and thermoluminescence (TL) during storage. Teas irradiated at 2.5 kGy or more showed a photon count of greater than 5000 counts/60 sec while the non-irradiated yielded only 650~1000 count/60 sec. Correlation coefficients between irradiation dose and photon counts/60 sec were 0.8951, 0.7934 and 0.9007 for green, black and oolong teas, respectively. The TL glow curves for minerals isolated from the non-irradiated teas were situated at about 30$0^{\circ}C$ with a low intensity, but for irradiated samples were approximately 15$0^{\circ}C$ with a high intensity. The TL ratios (TL$_1$/TL$_2$), calculated from values after initial radiation and then after re-irradiation of the teas, were below 0.1 for the non-irradiated samples and higher than 1.44 for all irradiated samples, enhanced the reliability of the identification results for TL. The signal intensity of PPSL and TL for irradiated teas decreased with the lapse of post-irradiation storage time at room temperature but was still distinguishable from that of the non-irradiated samples even after one year.

A Study on the Strength Safety of an Aluminium Liner for a Hydrogen Fuel Storage Tank (수소연료 저장탱크용 알루미늄 라이너의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • In this study, the strength safety for 110 liter hydrogen fuel storage tank with 70MPa filling pressure has been analyzed using a FEM technique. The strength safety of a composite fuel tank in which is fabricated by an aluminum liner of 6061-T6 and carbon fiber wound composite layers of T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray has been investigated based on the criterion of a strength safety of US DOT-CFFC and Korean Standard. The FEM computed results on the strength safety of 70MPa hydrogen gas tank showed that the hydrogen fuel storage tank in which is fabricated by T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray is safe because those two carbon fibers have very similar material properties. But, the composite storage tank with a filling pressure of 70MPa in which is fabricated by T700-12K of Toray may not guaranty the strength safety, and thus this study recommends a composite hydrogen fuel tank under 60MPa.

Preparation and Thermal Properties of Octadecane/xGnP Shape-Stabilized Phase Change Materials to Improve the Heat Storage Performance of Buildings (건축물 축열성능 향상을 위한 Octadecane/xGnP SSPCM 제조 및 열적성능 분석)

  • Kim, Sughwan;Jeong, Su-Gwang;Lee, Jeong-Hun;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.126-130
    • /
    • 2013
  • In this study, a shape-stabilized phase change material (SSPCM) was prepared by octadecane and exfoliated graphite nanoplate (xGnP) in a vacuum, to improve thermal storage performance. The octadecane as an organic phase change material (PCM) is very stable against phase separation of PCM, and has the proper temperature range for thermal comfort in the building; and the xGnP is a porous carbon nano-material. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR) were used to confirm the chemical and physical stability of the Ocatadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter (DSC), and Thermogravimetric analysis (TGA). The specific heat of Octadecane/xGnP SSPCM was $14.1J/g{\cdot}K$ at $31.3^{\circ}C$. The melting temperature ranges of melting and freezing were found to be $26{\sim}35^{\circ}C$ and $26{\sim}19^{\circ}C$, respectively. At this time, the latent heats of melting and freezing were 110.9 J/g and 104.5 J/g, respectively. The Octadecane was impregnated into xGnP by as much as about 56.0% of the Octadecane/xGnP SSPCM's mass fraction.

Quality Characteristics of Mixed Polysaccharide Gels with Various Kiwifruit Contents (키위 첨가량에 따른 다당류 혼합겔의 품질 특성)

  • 윤혜신;오명숙
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.511-520
    • /
    • 2003
  • This study was carried out to determine the effects of various contents of kiwifruit contents on the quality characteristics of mixed polysaccharide gels made from $\kappa$-carrageenan and locust bean gum. The color value, gelling temperature, melting temperature, break down rate, syneresis, rupture properties, TPA properties and sensory properties of mixed polysaccharide gels with various contents of kiwifruit contents were measured. As the kiwifruit contents was increased, the lightness (L), yellowness (b) and greenness (-a) of the mixed polysaccharide gels increased. There were no differences in the color values of gels during storage. As the kiwifruit content was increased, the gelling and melting temperatures of the mixed polysaccharide gels also increased. The mixed polysaccharide gels with high kiwifruit contents were difficult to melt, and it seemed that the addition of kiwifruit to the mixed polysaccharide gels could improve the thennal stability of the gels. The syneresis of the gel increased with increasing storage time, whereas the addition of kiwifruit to the gel resulted in suppression of syneresis. With regard to the rupture properties, stress, energy and strain, they were all decreased with increasing kiwifruit contents. The TPA properties, adhesiveness, hardness and chewiness increased and cohesiveness decreased with increasing kiwifruit contents. The results showed that the gel became tough and adhesive, and could be easily broken under small deformation, with increasing kiwifruit contents. The sensory evaluation showed that the green color, aroma, sweetness and sourness increased with increasing kiwifruit contents. The texture, adhesiveness, springiness and cohesiveness decreased, and brittleness and hardness increased, with increasing kiwifruit contents. The overall acceptability of the gel with 30% kiwifruit content was the highest. Thus, mixed polysaccharide gels made from kiwifruits could be useful, as the addition of kiwifruit to a mixed polysaccharide gel results in a good aroma, taste and stability, despite a lowering of the textural properties.

Estimation of Dynamic Properties of Steel Liquid Storage Tank by Shaking Table Test (진동대 실험에 의한 강재 액체저장탱크의 동특성 분석)

  • Choi, Hyoung Suk;Park, Dong Uk;Kim, Sung Wan;Kim, Jae Min;Baek, Eun Rim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.153-161
    • /
    • 2017
  • Liquid storage tank is one of the major infrastructures and generally used to store gases, drinking and utilizing water, dangerous fluids, fire water and so on. According to the recent reports and experiences, the tank structures are damaged in many earthquakes due to their low energy dissipating capacity. Therefore, many researchers have been tried to know the dynamic properties of the tanks including liquids. However, vary limited experimental studies are carried out using relatively small tank models. In this study, a series of shaking table tests are performed with maximum 2 m cubic rectangular liquid storage tanks made of steel to measure the natural frequency and estimate damping coefficient of impulsive and convective mode of the tanks. Especially, the damping values under different shapes and excitation methods are estimated by logarithmic decrement method and half power band-pass method and compared with current design code and standards such as ASCE 7, Eurocode 8 and NZS. Test results show that the impulsive mode damping is around 2% which is proposed by general standards and codes but the impulsive mode damping is 0.13% average that is slightly lower than the code recommendation.

Fabrication and Characteristics of Epoxy Resin-Type Based Neutron Shielding Materials (에폭시수지계 중성자 차폐재 제조 및 특성)

  • Cho, Soo-Haeng;Kim, Ik-Soo;Do, Jae-Bum;Ro, Seung-Gy;Park, Hyun-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.457-463
    • /
    • 1998
  • New neutron shielding materials, KNS-201, KNS-301 and KNS-601 have been fabricated to be used for radioactive material shipping and storage cask. The base materials are a modified and a hydrogenated bisphenol- A type and novolac type epoxy resin, and aluminium hydroxide and boron carbide are added. These shielding materials offer good fluidity at processing, which makes it possible to form this resin shield into complicated geometric shapes such as radioactive material shipping and storage cask. Several measurements were made for the shielding materials to evaluate the thermal and mechanical properties and radiation resistance. The properties of the shielding materials are as follows: onset temperatures 2S7~28$0^{\circ}C$, thermal conductivities 0.9S~1.14W/m. K, thermal expansion coefficients 0.77~1.26x$10_{-6}{\circ}C_{-1}$, combustion characteristics < 80$0^{\circ}C$, ATB(average time of burning) < 5sec, AEB(average extent of burning) < 5mm, tensile strengths 2.5~3.2kg/$\textrm{mm}^2$, compressive strengths 13.2~1S.2kg/$\textrm{mm}^2$, flexural strengths 5.2 -6.4kg/$\textrm{mm}^2$. In general, the concerned properties of KNS-201, KNS-301 and KNS-601 were revealed to be better than those of NS-4- FR. foreign neutron shielding material. It is also observed that the radiation resistance of KNS- 601 was better than those of KNS-201 and KNS-301.

  • PDF