Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.3.264

Hydrogenation Properties of Mg-5 wt.% TiCr10Nbx (x=1,3,5) Composites by Mechanical Alloying Process  

Kim, Kyeong-Il (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University)
Hong, Tae-Whan (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.3, 2011 , pp. 264-269 More about this Journal
Abstract
Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develope kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). $Mg-TiCr_{10}Nb$ systems were evaluated for hydrogen kinetics by Sievert's type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.
Keywords
hydrogenation; mechanical alloy; Mg-5wt.%$TiCr_{10}Nb_X$(x=1, 3, 5); kinetics; composite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 G. Barkhordarian, T. Klassen, and R. Bormann, Scripta Mater. 49, 213 (2003).   DOI   ScienceOn
2 A.R. Yavari, A. LeMoulec, F.R. de Castro, S. Deledda, O. Fredrichs, W.J. Botta, G. Vaughan, T. Klassen, A. Fernandez, and A. Kvick, Scripta Mater. 52, 719 (2005).   DOI   ScienceOn
3 J.-L. Bovet, B.Chevalier, M.Y. Song, and B. Darriet, Scripta Mater. 356-357, 570 (2003).
4 J.-L. Bovet, F.J. Castro, and B.Chevalier, Scripta Mater. 52, 33 (2005).   DOI   ScienceOn
5 M.Y. Song, I.H. Kwon, and J.-S. Bae, Int. J. Hydrogen Energy 30, 1107 (2005).   DOI   ScienceOn
6 J. Hout, J.F. Pellerier, L.B. Lurio, M. Sutton, and R. Schulz, J. Alloys Compd. 348, 319 (2003).   DOI   ScienceOn
7 W. Orelerich, T. Klassenm, and R. Bormann, J. Alloys Compd. 315, 237 (2001).   DOI   ScienceOn
8 Z.G. Huang, Z.P. Guo, A. Calka, D. Wexler, C. Luckey, and H.K. Liu, J. Alloys Compd. 422, 299 (2006).   DOI   ScienceOn
9 J.-H. You, S.-W. Cho, G. Shim, G.-S. Choi, C.-N. Park, and J. Choi, Trans. of Korean Hydrogen and New Energy Society 17, 125 (2006).
10 M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, and A. Kamegawa, Met. Mater. Int. 7, 67 (2001)   DOI
11 M. Okada, T. Kurriwa, A. Kamegawa, and H. Takamura, Mat. Sci. Eng. A, 329-331, 305 (2002)   DOI
12 M. Okada, T. Chou, A. Kamegawa, T. Tamura, H. Takamura, A. Matsukawa, and S. Yamashita, J. Alloys Compd. 356-357, 480 (2003)   DOI
13 K.-I. Kim and T.-W. Hong, Inst. Met. Mater. 47, 433 (2009)
14 M. Dirnheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gurgleisch, and R. Bormann, Scripta Mater. 56, 841 (2007).   DOI   ScienceOn
15 Adel Y. Easyed, Int. J. Hydrogen Energy 25, 357 (2000).   DOI   ScienceOn
16 A. M. Fernadez Samuel, Meera Rao, and O.N. Srivastava, Progress in Crystal Growth and Characterization 7, 391 (1983).   DOI   ScienceOn
17 K. Shin, S. Seok, and T.-W. Hong, J. Kor. Inst. Met. & Mater. 43, 708 (2005).
18 S. Orimo and H. Fugii, J. Alloys Compd. 32, L16 (1996).