• Title/Summary/Keyword: energy storage properties

Search Result 575, Processing Time 0.028 seconds

Dispersion Stability and Mechanical Properties of ZrO2/High-temp Composite Resins by Nano- and Micro-particle Ratio for Stereolithography 3D Printing (나노 및 마이크로 입자 비율에 따른 광조형 3D 프린팅용 ZrO2/High-temp 복합 수지의 분산 안정성 및 기계적 특성)

  • Song, Se Yeon;Park, Min Soo;Yun, Ji Sun
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.221-227
    • /
    • 2019
  • This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated $ZrO_2$ ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated $ZrO_2$ particles are observed by FE-TEM and FT-IR. The rheological properties of VTES-coated $ZrO_2/High-temp$ composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3D-printed objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated $ZrO_2$ ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.

Evaluations of Microstructure and Hydrogenation Properties on $Mg_2NiH_x$ ($Mg_2NiH_x$ 수소저장합금의 미세결정구조 및 수소화 특성평가)

  • Seok, Song;Shin, Kyung;Kweon, Soon-Yong;Ur, Soon-Chul;Lee, Young-Geun;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Mg and Mg-based alloys are most important hydrogen storage materials. It is a lightweight and low-cost materials with high hydrogen storage capacity. However, the formation of hydride at high temperature, the deterioration effect, the hydriding and dehydriding kinetics are bad factor for application. In this study, Mg and Ni have been produced by hydrogen induced mechanical alloying(HIMA) process. The raw materials, Mg(purity 99.9%) chip and Ni(purity 99.95%) chip was prepared by using a planetary ball mill apparatus(FRITSCH pulverisette 5). The balls to chips mass ratio(BCR) are 30:1. The hydrogen pressure induced 2.0MPa and milling times were 12, 24, 48, 72, 96 hours with a rotating speed of 200rpm. X-ray diffraction(XRD) analysis was made to characterize the crystallite size and misfit strain. The crystallite size measured by laser particle size analysis(PSA). Microstructure changes were investigated by scanning electron microscopy(SEM) and the transmission electron microscopy(TEM). The hydrogen storage properties were evaluated by using an Sivert's type automatic pressure-composition-therm(PCT) apparatus.

Preparation and Thermal Properties of Polystyrene Nanoparticles Containing Phase Change Materials as Thermal Storage Medium (열저장 매체로서 상변환 물질을 함유하는 폴리스티렌 나노입자의 제조 및 열적 특성)

  • Park, Soo-Jin;Kim, Ki-Seok;Hong, Sung-Kwon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.8-13
    • /
    • 2005
  • Polystyrene (PS) particles containing the phase change material (PCM) were synthesized by miniemulsion polymerization. The polymer particles prepared with different parameters were investigated in terms of average particle size, particle distribution, and latent heat storage of encapsulated paraffin wax (PW) as PCM. The morphology and particle features of PS particles were analyzed by scanning electron microscope and particle size analyzer, respectively. As a result, the diameters of PS particles were adjusted with manufacturing conditions. The stable and spherical PS particles of nanosize were obtained by miniemulsion polymerization, which could be attributed to the prevention of Ostwald ripening by cosurfactant. Thermal properties of PS particle containing PCM were studied by differential scanning calorimetry. From DSC freeze-thaw cycle, PCM coated with PS exhibited the thermal energy storage and release behaviors, and the latent heat was found to be a maximum 145 J/g. It was noted that PS particles containing PCM showed a good potential as a thermal energy storage medium.

Nitrogen and Fluorine Co-doped Activated Carbon for Supercapacitors

  • Kim, Juyeon;Chun, Jinyoung;Kim, Sang-Gil;Ahn, Hyojun;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.338-343
    • /
    • 2017
  • Activated carbon has lower electrical conductivity and reliability than other carbonaceous materials because of the oxygen functional groups that form during the activation process. This problem can be overcome by doping the material with heteroatoms to reduce the number of oxygen functional groups. In the present study, N, F co-doped activated carbon (AC-NF) was successfully prepared by a microwave-assisted hydrothermal method, utilizing commercial activated carbon (AC-R) as the precursor and ammonium tetrafluoroborate as the single source for the co-doping of N and F. AC-NF showed improved electrical conductivity ($3.8\;S\;cm^{-1}$) with N and F contents of 0.6 and 0.1 at%, respectively. The introduction of N and F improved the performance of the pertinent supercapacitor: AC-NF exhibited an improved rate capability at current densities of $0.5-50mA\;cm^{-2}$. The rate capability was higher compared to that of raw activated carbon because N and F codoping increased the electrical conductivity of AC-NF. The developed method for the co-doping of N and F using a single source is cost-effective and yields AC-NF with excellent electrochemical properties; thus, it has promising applications in the commercialization of energy storage devices.

Optimal Harvest-Use-Store Design for Delay-Constrained Energy Harvesting Wireless Communications

  • Yuan, Fangchao;Jin, Shi;Wong, Kai-Kit;Zhang, Q.T.;Zhu, Hongbo
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.902-912
    • /
    • 2016
  • Recent advances in energy harvesting (EH) technology have motivated the adoption of rechargeable mobile devices for communications. In this paper, we consider a point-to-point (P2P) wireless communication system in which an EH transmitter with a non-ideal rechargeable battery is required to send a given fixed number of bits to the receiver before they expire according to a preset delay constraint. Due to the possible energy loss in the storage process, the harvest-use-and-store (HUS) architecture is adopted. We characterize the properties of the optimal solutions, for additive white Gaussian channels (AWGNs) and then block-fading channels, that maximize the energy efficiency (i.e., battery residual) subject to a given rate requirement. Interestingly, it is shown that the optimal solution has a water-filling interpretation with double thresholds and that both thresholds are monotonic. Based on this, we investigate the optimal double-threshold based allocation policy and devise an algorithm to achieve the solution. Numerical results are provided to validate the theoretical analysis and to compare the optimal solutions with existing schemes.

The study on the Hydrogen Characteristics of MmNi4.5Mn0.5 Hydrogen Storage Alloy (MmNi4.5Mn0.5계 수소저장합금의 수소화 특성에 관한 연구)

  • Kang, Kil-Ku;Kang, Sei-Sun;Kwon, Ho-Young;Lee, Rhim-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.151-158
    • /
    • 2002
  • The hydorgen storage alloys were produced by melting in arc melting furnace and then solution heat treated at $1,100^{\circ}C$ followed by pulverization. The chemical analysis on the samples showed that the major elements of misch metal(Mm) were La, Ce, Pr and Nd with impurity less than 1wt.%. X-ray diffraction indicated that the structure for these samples were a single phase of hexagonal with $CaCu_5$ type. Compared to the initial particle size $100{\sim}110{\mu}m$, the many fine cracks were found and particle size decreased to $14{\mu}m$ for $MmNi_{4.5}Mn_{0.5}$ after hydriding/dehydring test run. To activate the sample the vessel filled with hydrogen storage alloys was first evacuated for for at $70^{\circ}C$ and then treated for 10.5hr under hydrogen pressure of 20atm for $MmNi_{4.5}Mn_{0.5}$ alloy. The experimental data showed that the hydrogen storage alloy of $MmNi_{4.5}Mn_{0.5}$ had superior adsorption and description properties within a temperature rang of $40^{\circ}C{\sim}80^{\circ}C$ and also they had a good P-C-T curve.

Sterilization of Garlic Powder by Irradiation (방사선(放射線)에 의한 마늘분말(粉末)의 살균(殺菌))

  • Kwon, Joong-Ho;Byun, Myung-Woo;Cho, Han-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.139-142
    • /
    • 1984
  • Effects of irradiation on the microbial growth and physicochemical properties of garlic powder were investigated during 3 months storage. Total bacteria and coliform group of garlic powder were $4.74{\times}10^{4}$ and $5.0{\times}10^{3}$ per g, respectively and irradiation of 5 kGy and 7 kGy could sterilize coliform group and total bacteria, respectively. $D_{10}$ value of total bacteria was 3.34 and no microorganisms were grown in 5 to f kGy irradiated groups after 3 months storage at $30{\pm}1^{\circ}C$. Moisture, sugars and pH of garlic powder were not remarkably changed during storage but pyruvic acid content was slightly decreased with storage period. Color difference of garlic powder after 3 months storage could not be distinguished by naked eye, but a slight change was recongized by the mechanical measurement.

  • PDF

Investigation of amorphous material with ice for cold thermal storage

  • Kim, Jhongkwon;Park, Hyunjun;Bae, Junhyuk;Jeong, Sangkwon;Chang, Daejun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • This study investigates mixtures of water and cryoprotectant agents (CPAs) to store high-grade cold energy. Although water is an ideal material for a cold thermal storage (CTS) due to its high specific heat, undesirable volume expansion may cause structural stresses during freezing. The volume expansion can be alleviated by adding the CPAs to water. However, the CPA aqueous solutions not only have different thermal properties but also transit to amorphous state different from pure water. Therefore, these characteristics should be considered when using them as material of the CTS. In experiments, glycerol and dimethyl sulfoxide (DMSO) are selected as the candidate CPA. The volume expansion of the solution is measured by an in-situ strain gauge in low temperature region. The specific heat capacity of the solution is also measured by differential scanning calorimetry (DSC). Both the amount of volume expansion and the specific heat capacity of the CPA aqueous solution decrease in the case of higher concentration of CPA. These characteristics should be contemplated to select optimal aqueous solution for CTS for liquid air energy storage system (LAES). The CPA solutions have advantages of having wide temperature range to utilize the latent heat of water and higher sensible heat of the CPA. The CPA solutions which can satisfy the allowable stress of the structure are determined. Consequently, among the CPA solutions investigated, DMSO 20% w/w solution is the most suitable for the CTS.

The research regarding the energy storage device which applies the carbon nanotube (탄소나노튜브를 활용한 에너지 저장 소자에 관한 연구)

  • Kim, Do-Hwan;Kang, Soon-Duk
    • The Journal of Information Technology
    • /
    • v.10 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • The multiple-ability which the structure and the physical properties which the carbon or scull tube are unique show the applicability is superior in the plane indication element which is an indispensability of information communications apparatus, the stubbornness memory element, 2nd change of air and the rough copy dosage [khay] plaque seater, the hydrogen store material and the chemical sensor back and it has the possibility which will pass over the limit which the element of existing has. from the present paper it compared in the steel and only 10 the boat it did and it analyzed against an energy storage space voluntary application and developmental apply the carbon or scull tube trend in order about under researching the effective energy storage element it could be appeared, the technique of the strong carbon nano tube. 1. The hazard which embodies the energy storage element which uses the carbon or scull tube it follows in the function which stands and CNT of the structure which is various is necessary. 2. CNT fabrications of each one must precede possible not only must be each Cabinet conference circumstances quality gain and loss. 3. The structural control of syntheses, length controls, diameter controls and the metal - CNT junction control backs of quality CNT must precede. Applies the hereafter carbon or the scull tube in the various element with the primary preceding base technique for the structural plan technique of the carbon or scull tube to be certainly established, it does, secondarily the various element functional control technique which uses the carbon or scull tube is researched and will do.

  • PDF

Electrochromic Properties of Li+-Modified Prussian Blue (리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구)

  • Yoo, Sung-Jong;Lim, Ju-Wan;Park, Sun-Ha;Won, Ho-Youn;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • The durability problem of Prussian blue in non-aqueous $Li_+$-based electrolytes has been due to the degradation of the Prussian blue electrode matrix during the insertion/extraction processes by $Li_+$. In this work, we designed and synthesised the Prussian blue without reducing the electrochromic performance in non-aqueous $Li_+$-based electrolytes. Prussian blue was electrodeposited on a glass which has ITO coating, and the coating solution is a mixture solution of $FeCl_3\;and\;K_3Fe(CN)_6$ with deionized water added HCl, KCl, and LiCl, respectively. The durability of Prussian blue was evaluated by an in-situ transmittance measurement during a continuous and pulse potential cycling test, and measured by electroactive layer thickness due to evaluating the degradation.