• Title/Summary/Keyword: energy storage device

Search Result 337, Processing Time 0.024 seconds

Behavour of Hold-down Springs in Kori Nuclear fuels

  • Chun, Yong-Bum;Park, Kwang-June
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.674-679
    • /
    • 1995
  • The hold-down spring forces of Kori nuclear fuels were measured for seven fuel assemblies having 1 to 4 cycles of irradiation histories in the Kori Unit-1 and -2 reactor. The fuel assemblies examined had burnup from 17 to 38 GWD/MTU and the examination was conducted in KAERI PIEF spent fuel storage pool with the newly developed underwater hold-down suing force measuring device. The measurement was made within the elastic deformation ranges and the trends of hold-down spring force relaxation behavour were examined.

  • PDF

Evaluation of Storage Engine on Edge-Based Lightweight Platform using Sensor·OPC-UA Simulator (센서·OPC-UA 시뮬레이션을 통한 엣지 기반 경량화 플랫폼 스토리지 엔진 평가)

  • Woojin Cho;Chea-eun Yeo;Jae-Hoi Gu;Chae-Young Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.803-809
    • /
    • 2023
  • This paper analyzes and evaluates to optimally build a data collection system essential for factory energy management systems on an edge-based lightweight platform. A "Sensor/OPC-UA simulator" was developed based on sensors in an actual food factory and used to evaluate the storage engine of edge devices. The performance of storage engines in edge devices was evaluated to suggest the optimal storage engine. The experimental results show that when using the RocksDB storage engine, it has less than half the memory and database size compared to using InnoDB, and has a 3.01 times faster processing time. This study enables the selection of advantageous storage engines for managing time-series data on devices with limited resources and contributes to further research in this field through the sensor/OPC simulator.

Development of a Composite Rotor for Flywheel Energy Storage System (플라이휠 에너지 저장 장치용 복합재 로터 개발)

  • Kim, Myung-Hun;Han, Hun-Hee;Kim, Jae-Hyuk;Kim, Seong-Jong;Ha, Seong-Gyu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • A flywheel system is an electromechanical energy storage device that stores energy by rotating a rotor. The rotating part, supported by magnetic bearings, consists of the metallic shaft, composite rims of fiber-reinforced materials, and a hub that connects the rotor to the shaft. The delamination in the fiber wound composite rotor often lowered the performance of the flywheel energy storage system. In this work, an advanced hybrid composite rotor with a split hub was designed to both overcome the delamination problem in composite rim and prevent separation between composite rim and metallic shaft within all range of rotational speed. It was analyzed using a three-dimensional finite clement method. In order to demonstrate the predominant perfom1ance of the hybrid composite rotor with a split hub, a high spin test was performed up to 40,000 rpm. Four radial strains and another four circumferential strains were measured using a wireless telemetry system. These measured strains were in excellent agreement with the FE analysis. Most importantly, the radial strains were reduced using the hybrid composite rotor with a split hub, and all of them were compressive. As a conclusion, a compressive pressure on the inner surface of the proposed flywheel rotor was achieved, and it can lower the radial stresses within the composite rotor, enhancing the performance of the flywheel rotor.

  • PDF

Development of a Cost-Effective 20K Hydrogen BET Measurement for Nanoporous Materials (나노다공체 물성 측정을 위한 극저온(20K) 수소 BET 개발 및 응용)

  • Park, Jaewoo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.466-470
    • /
    • 2017
  • With the matters of climate change, energy security and resource depletion, a growing pressure exists to search for replacements for fossil fuels. Among various sustainable energy sources, hydrogen is thought of as a clean energy, and thus efficient hydrogen storage is a major issue. In order to realize efficient and safe hydrogen storage, various porous materials are being explored as solid-states materials for hydrogen storage. For those purposes, it is a prerequisite to characterize a material's textural properties to evaluate its hydrogen storage performance. In general, the textural properties of porous materials are analyzed by the Brunauer-Emmett-Teller (BET) measurement using nitrogen gas as a probe molecule. However, nitrogen BET analysis is sometimes not suitable for materials possessing small pores and surfaces with high curvatures like MOFs because the nitrogen molecule may sometimes be too large to reach the entire porous framework, resulting in an erroneous value. Hence, a smaller probe molecule for BET measurements (such as hydrogen) may be required. In this study, we describe a cost-effective novel cryostat for BET measurement that can reach temperatures below the liquefaction of hydrogen gas. Temperature and cold volume of the cryostat are corrected, and all measurements are validated using a commercial device. In this way, direct observation of the hydrogen adsorption properties is possible, which can translate directly into the determination of textural properties.

A Study on the Design of a Wearable Solar Energy Harvesting Device Based on Outdoor Activities (아웃도어 활동기반 웨어러블 광에너지 하베스팅 장치 디자인에 관한 연구)

  • Lee, Eunyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1224-1239
    • /
    • 2020
  • This study develops a wearable solar energy harvesting device that absorbs solar energy to generate and store power which can be used during outdoor activities by users even after dark. For this study, a prototype hat for outdoor activities at night was developed after the design of a solar energy harvesting generation, storage, and delivery system was designed that could store energy to light up LEDs. First, the main control board of the system was designed to integrate the charging function, the darkness detection circuit, the battery voltage sensing circuit, and the LED driving circuit in order to reduce bulkiness and minimize the connection structure. It was designed to increase convenience. Second, the system was designed as a wearable fashion product that connected each part with fiber bands and manufacturing it so as to be detachable from the hat. Third, charging and LED operation tests show that the battery is fully charged after 5 hours even in winter when the illuminance value is low. In addition, the LED operation experiment verified the effectiveness of a buffered system that could operate the LEDs for about 3 hours at night.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

A Implementation of Acer Pictum Sap Integrated Management System based on Energy Harvesting and Monitoring System (에너지 하베스팅 및 모니터링 기반의 고로쇠 수액 통합 관리 시스템 구현)

  • Jung, SeHoon;Jo, KyeongHo;Kim, JunYeoung;Park, Jun;Kim, JongChan;Choi, SooIm;Sim, ChunBo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1324-1337
    • /
    • 2019
  • This study set out to investigate an energy harvesting device to ensure stable energy supply to batteries and data collection devices and a monitoring system for acer pictum sap to check collected data. Acer pictum sap farmers have written down weather information and yield of acer pictum sap manually for data storage. Since the job is done manually, there are many missing values in their data. In addition, it is not easy to manage batteries due to the characteristics of the areas where acer pictum sap is collected. The present study thus decided to build an energy harvesting device based on new renewable energy to ensure stable energy supply by taking into consideration power load, daily power consumption, and number of days with no sunshine for various devices. For a monitoring system, the investigator proposed a JSP-based web page to monitor temperature, humidity, volume of collected water, and battery state in real time. The proposed energy harvesting device was applied to reduce missing values in data. It promoted stable energy supply to the batteries and data collection devices, reducing the percentage of missing values in data from 30.55% to 0%.

An Active Damping Device for a Distributed Power System (전력시스템을 위한 Active Damping Device)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Distributed power systems (DPSs) has been widely used various industrial/military applications due to their various advantages. Furthermore, the "All electric" concept, in conjunction with DC DPS, appears to be more advanced and mature in the AEV(All-Electric Vehicular) industry. Generally, AEV carry many loads with varied functions. However, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, a converter with spilt capacitors and a simple adaptive controller is proposed as a active damping device to mitigate the voltage transients on the bus. The proposed converter allows the smaller capacitive storage. In addition, the proposed control approach has the advantage of requiring only one sensor and performing both the functions of mitigating the voltage bus transients and maintaining the level of energy stored. The control algorithm has been implemented on a TMS320F2812 Digital Signal Processor (DSP). Simulation and experimental results are presented which verify the proposed control principle and demonstrate the practicality of the circuit topology.

Bi-directional Photovoltaic Inverter with High Efficiency and Low Noise (고 효율, 저 잡음 특성을 가지는 양방향 태양광 인버터)

  • Lee, Sung-Ho;Kwon, Jung-Min;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.539-545
    • /
    • 2012
  • Due to merits cost and efficiency, the transformer-less type photovoltaic (PV) inverters have been popularized in the solar market. However, the leakage current flowing through a parasitic capacitor between PV array and ground can cause adverse effect in the transformer-less PV system. In this paper, a bi-directional PV inverter with high efficiency and low noise is proposed for the PV system with an energy storage device. The proposed inverter is a transformer-less type and performs the bi-directional power control between dc sources and grid with high efficiency. In addition, the proposed inverter can suppress the leakage current and obtain low noise characteristic. Finally, 3-kW prototype was implemented to confirm validity of the proposed inverter.

A Study on the Temperature Distribution Characteristics of NAS Battery Module (NAS 전지 모듈의 온도 분포 특성에 관한 연구)

  • Heo, Doo-Sang;Yi, Chung-Seob;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • This paper addresses the issue of Renewable Energy for Electricity Storage device is one of the NAS (Sodium-Sulfur) battery will be about the module. For safety reasons, not the actual battery cells using a dummy cell in the module's operating temperature setting to examine the characteristics of the insulation vacuum of the wall temperature and external temperature changes measured over time. Upper and lower boundaries of the wall vacuum insulation characteristics cotton C intervals over time, average $5^{\circ}C$, but the temperature is rising, 4C section with little temperature change did not occur. On the other hand, about $3^{\circ}C$ in section 4D, and it was confirmed that the temperature rises. Wall vacuum insulation characteristics over time to look at the experiments and measurements are described.