• 제목/요약/키워드: energy resolution

검색결과 1,088건 처리시간 0.025초

Electron Microburst Energy Dispersion Calculated by Test Particle Simulation

  • Lee, Jae-Jin;Kim, Yeon-Han;Park, Young-Deuk
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.94.2-94.2
    • /
    • 2011
  • Electron microbursts, energetic electron precipitation having duration less than 1 sec, have been thought to be generated by chorus wave and electron interactions. While the coincidence of chorus and microburst occurrence supports the wave-particle interaction theory, more crucial evidences have not been observed to explain the origin of microbursts. We propose the measurement of energy dispersion of microbursts could be an evidence supporting wave-particle theory. During chorus waves propagate along magnetic field, the resonance condition should be satisfied at different magnetic latitude for different energy electrons. If we observed electron microbursts at low altitude, the arrival time of different energy electrons should make unique dispersion structures. In order to observe such energy dispersion, we need a detector having fast time resolution and wide energy range. Our study is motivated from defining the time resolution and energy range of the detectors required to measure microburst energy dispersions. We performed test particles simulation to investigate how electrons interact with simple coherent waves like chorus waves. We compute a large number of electron's trajectories and successfully produce energy dispersion structures expected when microbursts are observed with 10 msec time resolution detectors at the altitude of 600 km. These results provide useful information in designing electron detectors for the future mission.

  • PDF

Study on the neutron imaging detector with high spatial resolution at China spallation neutron source

  • Jiang, Xingfen;Xiu, Qinglei;Zhou, Jianrong;Yang, Jianqing;Tan, Jinhao;Yang, Wenqin;Zhang, Lianjun;Xia, Yuanguang;Zhou, Xiaojuan;Zhou, Jianjin;Zhu, Lin;Teng, Haiyun;Yang, Gui-an;Song, Yushou;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1942-1946
    • /
    • 2021
  • Gadolinium oxysulfide (GOS) is regarded as a novel scintillator for the realization of ultra-high spatial resolution in neutron imaging. Monte Carlo simulations of GOS scintillator show that the capability of its spatial resolution is towards the micron level. Through the time-of-flight method, the light output of a GOS scintillator was measured to be 217 photons per captured neutron, ~100 times lower than that of a ZnS/LiF:Ag scintillator. A detector prototype has been developed to evaluate the imaging solution with the GOS scintillator by neutron beam tests. The measured spatial resolution is ~36 ㎛ (28 line pairs/mm) at the modulation transfer function (MTF) of 10%, mainly limited by the low experimental collimation ratio of the beamline. The weak light output of the GOS scintillator requires an enormous increase in the neutron flux to reduce the exposure time for practical applications.

Target Size Dependence of Spatial Resolution in Heavy Ion CT

  • Ohno, Yumiko;Kohno, Toshiyuki;Kanai, Tatsuaki;Sasaki, Hitomi;Nanbu, Syuya
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.94-96
    • /
    • 2002
  • In order to achieve the radiotherapy more precisely using highly energetic heavy charged particles, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. We can directly obtain the 2-D distribution of the electron density in a sample from a heavy ion CT image. For this purpose, we have developed a heavy ion CT system using a broad beam. The performance, especially the position resolution, of this system is estimated in this work. All experiments were carried out using the heavy ion beam from the HIMAC. We have obtained the projection data of polyethylene samples with various sizes using He 150 MeV/u, C 290 MeV/u and Ne 400 MeV/u beams. The used targets are the cylinders of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. The dependence of the spatial resolution on the target size and the kinds of beams will be discussed.

  • PDF

PET 장치와 화상 재구성법 (Positron Emission Computed Tomographs and Image Reconstruction Methods)

  • 이만구
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제22권1호
    • /
    • pp.5-11
    • /
    • 1999
  • This paper reviews recent major activities on instrumentation and methodology of PET. The performance of the PET instrumentation can be expressed by four physical characteristics, 1) spatial resolution, 2) coincidence resolving time, 3) energy resolution, and 4) detection efficiency. The physical and technical aspects of PET systems are briefly discussed along with these characteristics. Toward high resolution PET the recent trend has been to design multiple rings of densely packed detector arrays with scintillators. In order to satisfy the sampling requirement in reconstruction, continuous detector units has been developed. Iterative image reconstruction algorithms have received considerable attention for improvement of both the sampling requirement and image quality toward the stationary PET. Better resolving time improves the maximum true coincidence rate, which is also increased with more detectors placed in coincidence with each other. It suggests that volume PET is promising for enhancement of detection efficiency. The scattered coincidence event rate may be reduced by using detectors with better energy resolution. The use of interplane septa, however, takes over improvement of energy resolution in 2D PET. Energy resolution becomes an important factor for image quality under the condition of septa removal such as volume PET. Toward full utilization of emitting photons, 3D reconstruction incorporating oblique rays has been studied, and volume reconstruction algorithms have been developed. Practical volume PET systems impose heavy burden not only to detector sets and coincidence circuits, but also to computers in the memory requirements and the data processing. In conclusion, there have been many ingenious methods in development of PET instrumentation, which are based on unique capability of PET. They will be expected to overcome technical limitations, and to approach the fundamental limits.

  • PDF

후집속 방법을 이용한 에어로졸 TOF 질량분석기의 질량분해능 향상 연구 (Study on increasing the mass resolution in aerosol TOF mass spectrometer by using post focusing method)

  • 김덕현;양기호;차형기;김도훈;이상천
    • 분석과학
    • /
    • 제18권6호
    • /
    • pp.483-490
    • /
    • 2005
  • TOF 비행시간을 이용한 에어로졸 질량분석기에서 질량분석기의 분해능은 발생하는 이온의 초기에너지와 이온이 움직이는 진행방향에 따라 달라진다. 고출력 펄스형 레이저에 의하여 에어로졸로부터 용발되어 이온화된 원소들은 다른 속도로 사방으로 퍼져 나가게 되어 분해능 저하를 초래하는데 이를 방지하기 위해서 1차 가속된 이온들을 서로 다른 에너지로 후집속하여 같은 시간에 이온센서에 도달하도록 하는 장치에 대하여 연구를 수행하였다. 후집속 전위를 $90^{\circ}$ 방향으로 진행하는 이온을 중심으로 서로 다른 방향으로 걸어 줌으로써 TOF 영역을 지나 센서로 도입되는 이온의 도착 시간이 크게 개선되었음을 알 수 있었으며, 이를 실증하기 위하여 레이저 유도 이온을 만들고 후집속 장치를 구성하여 최적의 시간지연시간 및 전압 조건을 도출하여 그 성능을 증가시켰다.

SPATIAL AND ENERGY RESOLUTIONS OF A HEXAGONAL ANIMAL PET SCANNER BASED ON LGSO CRYSTAL AND FLAT-PANEL PMT

  • Lee, Chan-Mi;Hong, Seong-Jong;Yoon, Hyun-Suk;Ito, Mikiko;Kwon, Sun-Il;Park, Sang-Keun;Lee, Dong-Soo;Sim, Kwang-Souk;Lee, Jae-Sung
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.53-60
    • /
    • 2012
  • The aim of this study was to explore the spatial and energy resolutions of a PET scanner that we have recently developed. The scanner, which consists of six detector modules with 1-layer LGSO crystals, has a hexagonal configuration with a faceto- face distance of 86.4 mm between two opposite PET modules; such properties facilitate the imaging of small animals. A $^{22}Na$ point source was employed to estimate horizontal and vertical spatial resolutions. To assess the energy resolution, a uniform $^{18}F$ cylindrical phantom was scanned. A software-based spectrum analysis of list-mode data was used to assign a local energy window centered on the photopeak position for every single crystal. For the image reconstruction, an ML-EM algorithm was used. The spatial resolutions at the center of the scanner were 0.99 mm in the horizontal direction and 1.13 mm in the vertical direction. The energy resolution averaged over each PMT ranged from 13.3%-14.3%, which gave an average value of 13.8%. These results show that this simple system is promising for small animal imaging with excellent spatial and energy resolutions.

DEVELOPMENT OF LEAD SLOWING DOWN SPECTROMETER FOR ISOTOPIC FISSILE ASSAY

  • Lee, YongDeok;Park, Chang Je;Ahn, Sang Joon;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.837-846
    • /
    • 2014
  • A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ~E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

모바일 비디오 응용을 위한 적응적 공간 해상도 제어 인코딩 기법 (A Video Encoding Scheme using Adaptive Spatial Resolution Control for Mobile Video Applications)

  • 이희정;이용희;이정훈;신현식
    • 한국통신학회논문지
    • /
    • 제34권7C호
    • /
    • pp.654-662
    • /
    • 2009
  • 모바일 비디오 스트리밍을 위해 비디오 스트림들을 사용가능한 대역폭에 맞추면서 인코딩을 하기 위해서 시간 적 해상도, 공간적 해상도, 화면 화질의 세 가지 요소를 가지고 조절할 수 있는데, 그 중에서도 양자화 파라미터 (quantization parameter)를 가지고 화변 화질을 조절하는 것이 가장 널리 사용되고 있는 방법이다. 그러나 본 논 문에서는 낮은 대역폭 환경에서는 적응적으로 공간적 해상도를 변경하는 것이 화면 화질이나 에너지 소모량 면에서 더 효율적이라는 것을 보이고, 사용 가능한 대역폭에 대해서 최척의 공간적 해상도를 찾기 위한 모델을 제시 한다. 적응적 공간 해상도 제어 기법은 비디오 서버와 모바일 기기 간의 대역폭이 심하게 변화거나, 모바일 기기가 에너지 소모에 민감한 상황에서 특히 효과적이다. 본 기법은 낮은 비트율 상황에서 기존의 방법에 비해 화질을 약 0.5dB 만큼 개선하고, 에너지 소모를 50% 이상 줄일 수 있다.

Evaluation of a Fabricated Charge Sensitive Amplifier for a Semiconductor Radiation Detector

  • Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Lee, Jae-Hyung;Lee, Cheol-Ho
    • Journal of Radiation Protection and Research
    • /
    • 제35권2호
    • /
    • pp.81-84
    • /
    • 2010
  • A CSA(Charge Sensitive Amplifier) was designed and fabricated for application in a radiation detection system based on a semiconductor detector such as Si, SiC, CdZnTe and etc.. A fabricated hybrid.type CSA was evaluated by comparison with a commercially available CSA. A comparison was performed by using calculation of ENC (Equivalent Noise Charge) and by using energy resolutions of fabricated radiation detectors based on Si. In energy resolution comparison, a fabricated CSA showed almost the same performance compared with a commercial one. In this study, feasibility of a fabricated CSA was discussed.

병원 건물의 에너지 부하모델 개발 (Development of Energy Demand Models for Hospitals)

  • 박화춘;정모
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.636-642
    • /
    • 2009
  • Energy consumption data are surveyed and measured to develop energy demand models for hospital buildings as part of a complete package. Daily consumption profiles for electricity, heating, cooling and hot water are surveyed for 14 carefully chosen hospitals to establish energy demand patterns for a time span of a year. Then the hourly demand patterns of the 4 loads are field-measured for different seasons and statistically analyzed to provide higher resolution models. Used in conjunction with energy demand models for other types of buildings, the high resolution of 8760 hour energy demand models for a hospital for a typical year will serve as building blocks for the comprehensive model that allows the estimation of the combined loads for arbitrary mixtures of buildings.