• Title/Summary/Keyword: energy recovery system

Search Result 565, Processing Time 0.03 seconds

Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater (축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • A wastewater treatment pond system was developed for treatment and recycling of dairy cattle excreta of $5\;m^1$ per day. The wastes were diluted by the water used for clearing stalls. The system was composed of three ponds in series. A submerged gas collector for the recovery of methane was installed at the bottom of secondary pond with water depth of 2.4m. This paper deals mainly with performance of methane fermentation of secondary pond which is faclutative one. The average $BOD_5$, SS, TN, and TP concentrations of influent into secondary pond were 49.1, 53.4, 48.6, and 5.3 mg/l, and those of effluent from it were 27.9, 45.7, 30.8, 3.2 mg/l respectively. Methane fermentation of 2.4-meter-deep secondary pond bottom was well established at $16^{\circ}C$ and gas garnered from the collector at that temperature was 80% methane. Literature on methane fermentation of wastewater treatment ponds shows that methane bacteria grow well around $24^{\circ}C$, the rate of daily accumulation and decomposition of sludge is approximately equal at $19^{\circ}C$, and activities of methanogenic bacteria are ceased below $14^{\circ}C$. The good methane fermentation of the pond bottom around $16^{\circ}C$, about $3^{\circ}C$ lower than $19^{\circ}C$, results from temperature stability, anaerobic condition, and neutral pH of the bottom sludge layer. It is recommended that the depth of pond water could be 2.4m. Gas from the collector during active methane fermentation was almost 83% methane, less than 17% nitrogen. Carbon dioxide was less than 1% of the gas, which indicates that carbon dioxide produced in bottom sludges was dissolved in the overlaying water column. Thus a purified methane can be collected and used as energy source. Sludge accumulation on the pond bottom for a nine month period was 1.3cm and annual sludge depth can be estimated to be 1.7cm. Design of additional pond depth of 0.3m can lead to 15 - 20 year sludge removal.

  • PDF

Forward Osmotic Pressure-Free (△𝜋≤0) Reverse Osmosis and Osmotic Pressure Approximation of Concentrated NaCl Solutions (정삼투-무삼투압차(△𝜋≤0) 법 역삼투 해수 담수화 및 고농도 NaCl 용액의 삼투압 근사식)

  • Chang, Ho Nam;Choi, Kyung-Rok;Jung, Kwonsu;Park, Gwon Woo;Kim, Yeu-Chun;Suh, Charles;Kim, Nakjong;Kim, Do Hyun;Kim, Beom Su;Kim, Han Min;Chang, Yoon-Seok;Kim, Nam Uk;Kim, In Ho;Kim, Kunwoo;Lee, Habit;Qiang, Fei
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.235-252
    • /
    • 2022
  • Forward osmotic pressure-free reverse osmosis (Δ𝜋=0 RO) was invented in 2013. The first patent (US 9,950,297 B2) was registered on April 18, 2018. The "Osmotic Pressure of Concentrated Solutions" in JACS (1908) by G.N. Lewis of MIT was used for the estimation. The Chang's RO system differs from conventional RO (C-RO) in that two-chamber system of osmotic pressure equalizer and a low-pressure RO system while C-RO is based on a single chamber. Chang claimed that all aqueous solutions, including salt water, regardless of its osmotic pressure can be separated into water and salt. The second patent (US 10.953.367B2, March 23, 2021) showed that a low-pressure reverse osmosis is possible for 3.0% input at Δ𝜋 of 10 to 12 bar. Singularity ZERO reverse osmosis from his third patent (Korea patent 10-22322755, US-PCT/KR202003595) for a 3.0% NaCl input, 50% more water recovery, use of 1/3 RO membrane area, and 1/5th of theoretical energy. These numbers come from Chang's laboratory experiments and theoretical analysis. Relative residence time (RRT) of feed and OE chambers makes Δ𝜋 to zero or negative by recycling enriched feed flow. The construction cost by S-ZERO was estimated to be around 50~60% of the current RO system.

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Operation of High Performance Elutriation-Type Sludge Fermenter and Feasibility for Its Application (고성능 세정식 슬러지 산발효조의 운전 및 적용성 평가)

  • Ahn, Young-Ho;Speece, R.E.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • The performance of a novel fermentation process, adopting a sludge blanket type configuration for higher hydrolysis/acidogenesis of the municipal primary sludge, was investigated under batch and semi-continuous conditions with various pH and temperature conditions. This acid elutriation slurry reactor provided higher system performance with a short HRT (5 days) and higher acidogenic effluent quality under pH 9 and thermophilic ($55^{\circ}C$) conditions. The hydrolysis of the sludge was revealed to be significantly dependent on seasonal effects for sludge characteristics but with little impact on acidogenesis. Based on the rainy season at the optimum conditions, VFA production and recovery fraction ($VFA_{COD}/COD$) were $0.18\;g\;VFA_{COD}\;g^{-1}\;VSS_{COD}$ and 63%. As byproducts, nitrogen and phosphorus releasing were $0.006\;g\;N\;g^{-1}\;VSS_{COD}$ and $0.003\;g\;P\;g^{-1}\;VSS_{COD}$, respectively. For the mass balance in a full-scale plant($Q=158,880\;m^3\;day^{-1}$) based on the rainy season, the VFA and non-VFA(as COD) production were $3,110\;kg\;VFA_{COD}\;day^{-1}$ and $1,800\;kg\;COD\;day^{-1}$, resulting in an increase of organics of $31\;mg\;COD\;L^{-1}$ and $20\;mg\;VFA_{COD}\;L^{-1}$ and nutrients of $0.7\;mg\;N\;L^{-1}$ and $0.3\;mg\;P\;L^{-1}$ in the influent sewage. The economical benefit from this process application was estimated to be about $67 per $1,000m^3$ of sewage except for energy requirements and also, better benefits can be expected during the dry season. Also, the results revealed that the process has various additional advantages such as pathogen-free stabilized solids production, excellent solids control and economical benefits.

Optimization of Hybrid Process of(Chemical Coagulation, Fenton Oxidation and Ceramic Membrane Filtration) for the Treatment of Reactive Dye Solutions (반응성 염료폐수 처리를 위한 화학응집, 펜톤산화, 세라믹 분리막 복합공정의 최적화)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Lee, Byung-Hwan;Kim, Tak-Hyun;Lee, Jin-Won;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 2006
  • This study investigated the effects of hybrid process(chemical coagulation, Fenton oxidation and ceramic UF(ultrafiltration)) on COD and color removals of commercial reactive dyestuffs. In the case of chemical coagulation, the optimal concentrations of $Fe^{3+}$ coagulant for COD and color removals of RB49(reactive blue 49) and RY84(reactive yellow 84) were determined according to the different coagulant dose at the optimal pH. They were 2.78 mM(pH 7) in RB49 and 1.85 mM(pH 6) in RY84, respectively. In the case of Fenton oxidation, the optimal concentrations of $Fe^{3+}\;and\;H_2O_2$ were obtained. Optimal $[Fe^{2+}]:[H_2O_2]$ molar ratio of COD and color removals of RB49 and RY84 were 4.41:5.73 mM and 1.15:0.81 mM, respectively. In the case of ceramic UF, the flux and rejection of supernatant after Fenton oxidation were investigated. After ceramic UF for 9 hr, the average flux of RB49 and RY84 solutions were $53.4L/m^2hr\;and\;67.4L/m^2hr$ at 1 bar, respectively. In addition, the permeate flux increased and the average flux recovery were 98.5-99.9%(RB49) and 91.0-97.3%(RY84) according to adopting off-line cleaning(5% $H_2SO_4$). Finally, COD and color removals were 91.6-95.7% and 99.8% by hybrid process, respectively.