Optimization of Hybrid Process of(Chemical Coagulation, Fenton Oxidation and Ceramic Membrane Filtration) for the Treatment of Reactive Dye Solutions

반응성 염료폐수 처리를 위한 화학응집, 펜톤산화, 세라믹 분리막 복합공정의 최적화

  • Yang, Jeong-Mok (Green Engineering Team, Korea Institute of industrial Technology(KITECH)) ;
  • Park, Chul-Hwan (Green Engineering Team, Korea Institute of industrial Technology(KITECH)) ;
  • Lee, Byung-Hwan (Department of Chemical System Engineering, Keimyung University) ;
  • Kim, Tak-Hyun (Division of Radiation Application, Korea Atomic Energy Research Institute(KAERI)) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Sang-Yong (Green Engineering Team, Korea Institute of industrial Technology(KITECH))
  • 양정목 (한국생산기술연구원 청정공정팀) ;
  • 박철환 (한국생산기술연구원 청정공정팀) ;
  • 이병환 (계명대학교 화학시스템공학과) ;
  • 김탁현 (한국원자력연구소 방사선이용연구부) ;
  • 이진원 (서강대학교 화공생명공학과) ;
  • 김상용 (한국생산기술연구원 청정공정팀)
  • Published : 2006.03.31

Abstract

This study investigated the effects of hybrid process(chemical coagulation, Fenton oxidation and ceramic UF(ultrafiltration)) on COD and color removals of commercial reactive dyestuffs. In the case of chemical coagulation, the optimal concentrations of $Fe^{3+}$ coagulant for COD and color removals of RB49(reactive blue 49) and RY84(reactive yellow 84) were determined according to the different coagulant dose at the optimal pH. They were 2.78 mM(pH 7) in RB49 and 1.85 mM(pH 6) in RY84, respectively. In the case of Fenton oxidation, the optimal concentrations of $Fe^{3+}\;and\;H_2O_2$ were obtained. Optimal $[Fe^{2+}]:[H_2O_2]$ molar ratio of COD and color removals of RB49 and RY84 were 4.41:5.73 mM and 1.15:0.81 mM, respectively. In the case of ceramic UF, the flux and rejection of supernatant after Fenton oxidation were investigated. After ceramic UF for 9 hr, the average flux of RB49 and RY84 solutions were $53.4L/m^2hr\;and\;67.4L/m^2hr$ at 1 bar, respectively. In addition, the permeate flux increased and the average flux recovery were 98.5-99.9%(RB49) and 91.0-97.3%(RY84) according to adopting off-line cleaning(5% $H_2SO_4$). Finally, COD and color removals were 91.6-95.7% and 99.8% by hybrid process, respectively.

본 연구에서는 화학응집, 펜톤산화, 세라믹 분리막 복합공정을 적용하여 상업적으로 이용되고 있는 반응성 염료의 유기물 및 색도제거 영향을 조사하였다. 화학응집의 경우, $Fe^{3+}$ 응집제 농도를 결정하기 위해 각각의 최적 pH에 따른 응집주입량을 변화시켜 결정하였다. 이때의 최적 값은 RB49(reactive blue 49)가 pH 7에서 2.78 mM, RY84(reactive yellow 84)가 pH 6에서 1.85 mM로 나타났다. 펜톤산화의 경우, $H_2O_2$$Fe^{2+}$의 최적의 주입농도를 선정하고 펜톤시약 주입비율을 결정하였다. 이때의 최적 주입비율($[H_2O_2]:[Fe^{2+}]$은 RB49가 4.41:5.73 mM, RY84가 1.15:0.81 mM로 결정되었다. 세라믹 한외여과막의 경우, 펜톤산화 이후 상등액의 투과플럭스와 배제율을 조사하였다. 전체 운전시간인 9시간 동안 RB49와 RY84의 평균 투과플럭스 값은 1 bar일 때 각각 $53.4L/m^2hr$$67.4L/m^2hr$이었다. 부가적으로 펜톤산화 상등액을 오프라인 화학세정(5% $H_2SO_4$) 결과, RB49의 평균 투과플럭스 회복율은 98.5-99.9%, RY84는 91.0-97.3%로 나타났다. 복합공정의 전체 COD 제거율은 91.6-95.7%, 색도제거율은 99.8% 이상으로 나타났다. 결론적으로, 복합공정 구성을 통하여 반응성염료가 주성분인 염료폐액의 효율적 처리를 위한 공정중의 하나가 될 수 있음을 확인하였다.

Keywords

References

  1. World Bank Group. Pollution prevention and abatement handbook(1998)
  2. Al-Degs, Y., Khraishen, M. A. M., Allen, S. J., and Ahmad, M. N., 'Effeect of carbon surface chemistry on the removal of reactive dyes from textile effluent,' Water Res., 34, 927-935(2000) https://doi.org/10.1016/S0043-1354(99)00200-6
  3. Ahn, D. H., Chang, W. S., and Yoon, T. I., 'Dyestuff wastewater treatment using chemical oxidation, physical adsorption,' Process Biochem., 34, 429-439(1999) https://doi.org/10.1016/S0032-9592(98)00111-3
  4. Dhale, A. D. and Mahajani, V. V., 'Studies in treatment of disperse dye waste: membrane-wet oxidation process,' Waste Manage, 20, 85-92(2000) https://doi.org/10.1016/S0956-053X(99)00276-7
  5. Chen, G., Lei, L., and Yue, P. L., 'Wet oxidation of high-concentration reactive dyes,' Ind. Eng. Chem. Res., 38, 1837-1843(1999) https://doi.org/10.1021/ie980617d
  6. Arslan, I. and Balcioglu, I. A., 'Effect of common reactive dye auxiliaries on the ozonation of dyehouse effluents containing vinylsulphone and aminochlorotriazine dyes,' Desalination, 130, 61-71(2000) https://doi.org/10.1016/S0011-9164(00)00074-6
  7. Lin, S. H. and Lai, C. H., 'Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds,' Water Res., 34, 763-772(2000) https://doi.org/10.1016/S0043-1354(99)00214-6
  8. Sun, G. and Xu, X., 'Sunflower stalks as adsorbents for color removal from textile wastewater,' Ind. Eng. Chem. Res., 36, 808-812(1997) https://doi.org/10.1021/ie9603833
  9. Kim, T. H., Park, C, Shin, E. B, and Kim, S., 'De-colorization of disperse and reactive dyes by continuous electrocoagulation process,' Desalination, 150, 165-175 (2002) https://doi.org/10.1016/S0011-9164(02)00941-4
  10. Dutta, K., Mukhopadhyay, S., Bhattacharjee, S., and Chaudhuri, B., 'Chemical oxidation of methylene blue using a Fenton-like reaction,' J. Hazard. Mater., 84, 57-71(2001) https://doi.org/10.1016/S0304-3894(01)00202-3
  11. Sarria, V., Deront, M., Peringer, P., and Pulgarin, C., 'Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron(III) photoassisted-biological treatment,' Appl. Catal. B: Environ., 40, 231-246(2003) https://doi.org/10.1016/S0926-3373(02)00162-5
  12. Zhu, W., Yang, Z., and Wang, L., 'Application of ferrous hydrogen peroxide for treatment of DSD-acid manufacturing process wastewater,' Water Res., 35, 2087-2091(2001) https://doi.org/10.1016/S0043-1354(00)00462-0
  13. 조재원, 멤브레인공학, 초판, 신광문화사, 서울, pp. 29-42(2004)
  14. Yu, G., Zhu, W., and Yang, Z., 'Pretreatment and biodegradability enhancement of DSD acid manufacturing wastewater,' Chemosphere, 37, 487-494(1998) https://doi.org/10.1016/S0045-6535(98)00064-2
  15. Sheng, H. L. and Cho, C. L., 'Fenton process for treatment of desizing wastewater,' Water Res., 31, 2050-2056(1997) https://doi.org/10.1016/S0043-1354(97)00024-9
  16. Walter, Z. T. and Rena, Z. C., 'Decolorization kinetics and Mechanisms of commercial dyes by $H_2O_2$/Iron powder system,' Chemosphere, 32, 947-958(1996) https://doi.org/10.1016/0045-6535(95)00358-4
  17. Shen, Z., Wang, W., Jia, J., Ye, J., Feng, X., and Peng, A., 'Degradation of dye solution by an activated carbon fiber electrode electrolysis system,' J. Hazard. Mater., 84, 107-116(2001) https://doi.org/10.1016/S0304-3894(01)00201-1
  18. Montgomery, J. H., Water treatment principles and design, Wiley Interscience Publication, New York, pp. 119-126 (1985)
  19. 이종현, 이형준, 남해옥, 박태주, 'Fenton 산화를 이용한 안료폐수의 유기물, 색도제거 특성', 대한환경공학회지, 21(5), 1013-1021(1999)
  20. AWWA Research Foundation, Water Treatment Membrane Processes, ch.2(1996)