• Title/Summary/Keyword: energy ratio data

Search Result 1,076, Processing Time 0.033 seconds

Metabolic Syndrome Risk by Dietary Fat Energy Ratio in Middle-aged Men - Using the 2012~2013 Korean National Health and Nutrition Examination Survey Data - (중년 남성의 지방 에너지비에 따른 대사증후군 위험도 비교 - 2012~2013년 국민건강영양조사 자료 이용 -)

  • Her, Eun-Sil
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1030-1039
    • /
    • 2016
  • This study aimed to compare energy nutrient intake, health related factors, physical characteristics, blood biochemical indices, prevalence of metabolic syndrome and odds ratio (OR) of metabolic syndrome based on dietary fat energy ratio. Subjects were 1,205 men aged 40~64 years. The average fat intake was 52.8 g. Subjects were divided into three groups (deficient, normal, excess) based on dietary fat energy ratio. The dietary fat energy rations of the three groups were 36.9%, 42.9% and 20.2%, respectively. Energy and protein intake were increased significantly with dietary fat energy ratio (p<0.001), whereas carbohydrate intake decreased (p<0.001). In health related factors, amount of smoking alone showed increase based on dietary fat energy ratio (p<0.001). In comparing physical characteristics, blood pressure and blood biochemical indices, excepting diastolic blood pressure, increased significantly based on dietary fat energy ratio (p<0.01~p<0.001). The rate that exceeded criteria in risk factors for metabolic syndrome was higher in the serum triglyceride (41.2%) and was lower in the waist circumference (22.2%). Prevalence of metabolic syndrome was 37.9%, and showed significant correlation to dietary fat energy ratio (p<0.05). The OR of metabolic syndrome was higher in deficient and excess group than in normal group, but it had no relationship between fat energy ratio and metabolic syndrome. The results of this study provide basic data to establish fat intake guidelines for prevention of metabolic syndrome in middle-aged men.

Photovoltaic System Energy Performance Analysis Using Meteorological Monitoring Data (기상 환경 모니터링 데이터를 이용한 태양광발전시스템 발전량 성능 분석)

  • Kwon, Oh-Hyun;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.11-31
    • /
    • 2018
  • Nowadays, domestic photovoltaic system market has been expanded and the governmental dissemination policy has been continued. There is only PV system output performance analysis which is called Performance Ratio(PR) analysis. However, there exists many parameters that can affect PV system output. This papers shows the PV system energy performance analysis using meteorological monitoring data. The meteorological monitoring system was installed in the H university and we analyzed the PV system which installed in the H university. We also investigated other three PV systems which located less than 3 kilometers from H university. We evaluated total 4 PV systems through the field survey data, design drawing data and power generation data. Finally, we compared the actual measuring data with the simulation data using PVSYST software.

Analysis of Thermodynamic Design Data for Cooling of Double -Effect Absorption System of Solar Energy using LiBr - water and Ethylene Glycol Mixture (흡수액으로 에틸렌글리콜이 혼합되고 태양열을 이용한 이중효용 흡수식 시스템의 냉방 특성해석)

  • Won, Seung-Ho;Park, Sang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.45-54
    • /
    • 2003
  • For cooling of double effect absorption heat pump system of solar heating source, analysis of thermodynamic design data has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data, enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture ($H_2O$ : CHO ratio 10:1 by mole) by computer simulation are done. The obtained results, COP and mass flow ratio of the water - lithium bromide - ethylene glycol system, are compared with data for the water-Libr pair solution.

Accuracy of Estimating Energy Intake in the Korean Urban Elderly: 24-Hour Dietary Recall

  • Kye, Seung-Hee;Kim, Cho-Il;Smiciklas Wright, Helen
    • Nutritional Sciences
    • /
    • v.2 no.2
    • /
    • pp.113-118
    • /
    • 1999
  • Critical evaluation of energy intake data from dietary studies is difficult but important. To investigate the underreporting of total energy intake, we analyzed the one-day dietary intake data collected by 24-hour recall method from 550 elderly Koreans aged 60 years or older. Underreporting was addressed by computing the ratio of energy intake (EI) to estimated basal metabolic rate (BMRest). EI : BMRest ratio was found to be 1.38 for, men and 1.33 for women, with about 14% of men and women classified as underreporters. Underreporting of energy intake was highest in men and women who were overweight, had lower family income, or no school education. For men, the most significant variables to predict the ratio of energy intake to estimated basal metabolic. rate (EI : BMRest) were weight status, members of household, alcohol consumption and age, while income and education level were most significant for women.

  • PDF

Quality Control and Characteristic of Eddy Covariance Data in the Region of Nakdong River (낙동강 유역에서 관측된 에디 공분산 자료의 품질 관리 및 플럭스 특성)

  • Lee, Young-Hee;Lee, Byoungju;Kahng, Keumah;Kim, Soo-Jin;Hong, Seon-Ok
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.307-320
    • /
    • 2013
  • We performed comprehensive quality control for eddy-covariance measurements from 3 farmland sites and 1 industrial site adjacent to Nakdong river. The quality control program is based on Foken and Wichura (1996) and Vicker and Mahrt (1997) and we added criteria for trend and standard deviation for scalar variables and modified criteria for non-stationarity condition of Foken and Wichura (1996) to consider random error of fluxes. The classification of data quality is designed for the raw data and the processed flux data, separately. Use of added criteria efficiently reduces the number of outlier for water vapor and $CO_2$ fluxes and use of modified criteria for non-stationarity reduces the number of outlier for scalar fluxes and increases the number of data with accepted quality for further work. Energy balance ratio is higher in farmlands than industrial site, which is due to neglect of heat storage term in industrial site. Among farmland sites, C4 site shows higher energy balance ratio than other sites. This is due to more homogeneous surface of C4 site than other farmland sites. However, energy balance ratio is very low or even negative at night. Mismatch between the flux footprint and the other energy component footprint over the heterogeneous surface is main cause for energy imbalance at night. Other possible causes are also discussed.

A Study on the Optimal Method of Eco-Friendly Recycling through the Comparative Analysis of the Quantitative Calculation and Scope of Recycling

  • Seung-jun WOO;Eun-gyu LEE;Chul-hyun NAM;Kang-hyuk LEE;Woo-Taeg KWON;Hee-Sang YU
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: The purpose of this study is to present an efficient emission reduction ratio of plastic to reduce carbon dioxide, the main cause of greenhouse gases. Research design, data and methodology: This study calculated the absolute value of carbon dioxide by setting an equation through the emission coefficient using the US EPA's WARM model. Results: In the recycling ratio of 70%, it was found that the energy recovery ratio was 15.6%, which was the energy recovery ratio without generating carbon dioxide. When carbon dioxide is generated by changing plastic waste emissions, optimal efficiency is achieved by reducing emissions by 10% to 30% of energy recovery ratio, 20% to 50% of energy recovery ratio, and 30% to 80% or more of energy recovery ratio. Conclusions: The recycling rate should be set at a minimum of 70%, so that a carbon dioxide-free energy recovery rate could be obtained during the recycling process, supporting an eco-friendly basis for environmental policies aimed at this rate. In addition, it was possible to suggest that it is essential to reduce emissions by at least 30% for eco-friendly recycling measures that can achieve both economic and environmental feasibility in the energy recovery process through incineration during recycling in Korea.

A Comparative Analysis of the Energy Load due to Window Area Ratio of Domestic Public Buildings

  • An, Kwang-Ho;Hyun, Eun-Mi;Kim, Yong-Sik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In the case of public buildings, fast communication and transparency in the administration and the public, as well as ensuring visibility and lighting performance using a glass curtain wall is symbolically expressed through the transparent glass skin. This study is a simulation in order to derive the basic data for the establishment of the improvement of the heating and cooling load analysis according to the window area ratio changes with respect to the high effectiveness of the government's large public building energy consumption analysis and green building certification system of guidelines was analyzed by a change in the energy load. Glass curtain wall is light and visibility, the symbolic meaning of communication, etc., but is widely used in a variety of characteristics, in terms of energy consumption being disadvantaged sheath plan should have been. Design, including the Atrium, is much less energy than energy consumption by the window area ratio. Thus, while compliance with design guide lines, the atrium and I like the burden of a large space ratio and energy load consists of only glass suggest that require more research on that given in the guidelines.

Optimum Design of Thermosyphon Solar Hot Water System (자연 대류형 태양열 온수기 최적 설계에 관한 연구)

  • Kang, Y.H.;Kwak, H.Y.;Lee, D.G.;Kang, M.C.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 1998
  • It was compared with experimental data to verify TRNSYS Model of the thermosyphon hot water system and the various simulations were conducted to optimize the component parameters of the system. To obtain consistent simulation results the system model, which could accurately describ the thermal storage tank temperature stratification and the friction head for mass flow rate, was used. The optimization of collector parameters(collector aspect ratio, riser numbers per header unit length), thermal storage tank parameters(ratio of tank length to tank diameter, heat exchanger type), system parameters(ratio of tank volume to collector area) was simulated by TRNSYS program. The simulation results indicate that the system performance is more effected by collector aspect ratio and the ratio of tank volume to collector area than the othor parameters.

  • PDF

Analysis of Maximum Generating Power Drop of PV Module Under the Continuous Artificial Light Irradiation Test Condition (연속 광조사 조건에서의 태양전지모듈의 연간 최대출력 저하율 변화 예측 분석)

  • Kim, Kyungsoo;Yun, Jaeho
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.69-73
    • /
    • 2018
  • PV system is consisted with PV module, inverter and BOS(balance of system). To have robustic operation more than 20 years, the expected and guaranteed durability and reliability of products should be met. Almost components of PV system are qualified through IEC standards at test laboratory. But the qualification certificate of product does not ensure long-term nondefective operation. PV module's expected life time is nowadays more than 20 years and annual maximum power degradation ratio would be less than -1%. But the power degradation ratio is basically based on real data more than several years' record. Developing test method for ensuring annual maximum power degradation ratio is very need because there are many new products every month with new materials. In this paper, we have suggested new test method under continuous artificial light irradiation test condition for analyze expected maximum power drop ratio.

Impact of Horizontal Global Solar Radiation Calculation Modelson Building Energy Performance Analysis Considering Solar Heat Gain Coefficient and Window-to-wall Ratio (수평면 전일사량 산출모델이 일사열취득계수 및 창면적비를 고려한 건물 에너지 성능분석에 미치는 영향)

  • Kim, Kee Han;Oh, John Kie-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Solar applications analysis and building energy performance depend on the quality of the solar resource data available. Unfortunately, most of the weather stations do not measure solar radiation data in Korea, as a reason many researchers have studied different solar radiation estimation models and suggested to apply them to various locations in Korea. In addition, they also studied the impact of hourly global solar radiation on energy performance of an office building by comparing the simulated building energy consumptions using four different weather files, one using measured, and three estimated solar radiation from different models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM), and concluded that there was some impact on energy performance of the building due to the using different solar radiation models. However, the result cannot be applied to all other buildings since the simulated office building for that study only used limited building characteristics such as using fixed values of solar heat gain coefficient (SHGC) and window-to-wall ratio (WWR), which are significant parameters related to solar radiation that affect to the building energy consumptions. Therefore, there is a need to identify how the building energy consumption will be changed by varying these building parameters. In this study, the impact of one measured and three estimated global solar radiation on energy performance of the office building was conducted taking account of SHGC and WWR. As a result, it was identified that the impact of four different solar radiation data on energy performance of the office building was evident regardless SHGC and WWR changes, and concluded that the most suitable solar models was changed from the CRM/ZHM to the MRM as SHGC and WWR increases.