• Title/Summary/Keyword: energy module

Search Result 1,500, Processing Time 0.035 seconds

Analysis on thermal & electrical characteristics variation of PV module with damaged bypass diodes (PV 모듈 내 바이패스 다이오드 손상에 의한 열적 전기적 특성 변화 분석)

  • Shin, Woo-Gyun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • PV module is conventionally connected in series with some solar cell to adjust the output of module. Some bypass diodes in module are installed to prevent module from hot spot and mismatch power loss. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we study the thermal and electrical characteristics change of module with damaged bypass diode to easily find module with damaged bypass diode in photovoltaic system consisting of many modules. Firstly, the temperature change of bypass diode is measured according to forward and reverse bias current flowing through bypass diode. The maximum surface temperature of damaged bypass diode applied reverse bias is higher than that of normal bypass diode despite flowing equal current. Also, the output change of module with and without damaged bypass diode is observed. The output of module with damaged bypass diode is proportionally reduced by the total number of connected solar cells per one bypass diode. Lastly, the distribution temperature of module with damaged bypass diode is confirmed by IR camera. Temperature of all solar cells connected with damaged bypass diode rises and even hot spot of some solar cells is observed. We confirm that damaged bypass diodes in module lead to power drop of module, temperature rise of module and temperature rise of bypass diode. Those results are used to find module with a damaged bypass diode in system.

Prediction of temperature distribution in PV module using finite element method (유한 요소 해석 프로그램을 이용한 모듈 내 온도 분포 예측)

  • Park, Young-Eun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Kim, Jun-Tae;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.65-72
    • /
    • 2016
  • PV module is installed in various outdoor conditions such as solar irradiation, ambient temperature, wind speed and etc. Increase in solar cell temperature within PV module aggravates the behaviour and durability of PV module. It is difficult to measure temperature among respective PV module components during PV module operating, because the temperature within PV module depends on thermal characteristics of PV module components materials as well as operating conditions such as irradiation, outdoor temperature, wind etc. In this paper, simulation by using finite element method is conducted to predict the temperature of each components within PV module installed to outdoor circumstance. PV module structure based on conventional crystalline Si module is designed and the measured values of thickness and thermal parameters of component materials are used. The validation of simulation model is confirmed by comparing the calculated results with the measured temperatures data of PV module. The simulation model is also applied to estimate the thermal radiation of PV module by front glass and back sheet.

Analysis of Soiling for the Installation Direction of PV Module (태양전지 모듈의 설치방향에 따른 오염특성 분석)

  • Lee, Chung Geun;Shin, Woo Gyun;Lim, Jong Rok;Ju, Young Chul;Hwang, Hye Mi;Ko, Suk Whan;Chang, Hyo Sik;Kang, Gi Hwan
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.76-82
    • /
    • 2020
  • Soiling on the surface of a PV module reduces the amount of light reaching the solar cells, decreasing power performance. The performance of the PV module is generally restored after contaminants on the module surface are washed away by rain, but it accumulates at the bottom of the module owing to the thickness of the module frame, causing an output mismatch on the PV module. Since PV modules are usually installed horizontally or vertically outdoors, soiling can occur at the bottom of the PV module, depending on the installation direction due to external environmental factors. This paper is analyzed the output characteristics of a PV module considering its installation direction and the soiling area. The soiling was simulated to use transparent films with 5% transmittance, and the transmission film was attached to the bottom part of the PV module horizontally and vertically. When the soiling area was 33% of the string at the bottom of the PV module, the power output decreased similarly regardless of installation direction. However, when the soiling area was 66% of the string at the bottom of the PV module, it was confirmed that the output performance decreased sharply when installed vertically rather than horizontally.

Time Series Analysis of Crystalline Silicon Photovoltaic Module Certification Results (결정질 실리콘 태양광발전모듈 인증 실적의 시계열 분석)

  • Han, Yun-Cheol;Kim, Ik-Pyo;Kang, Kyu-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.33-45
    • /
    • 2017
  • Crystalline silicon photovoltaic module certification began in 2007. "Renewable Energy Equipment Certification Scheme" was implemented until July 28, 2015. Then, the scheme was changed to "KS Certification Scheme" since July 29, 2015. A total of 2,331 models have been certified by 2016. The proportion of multi crystalline modules in certified products is higher than that of mono crystalline modules, and Korean modules account for 78% of the total certification modules. Chinese solar cells account for the highest percentage of 40% of the total modules and 62.4% of modules certified in 2016 use Chinese solar cells. With the development of technology, module power is continuously increasing, and efficiency is also rising. The average efficiency of mono crystalline module is 0.74% higher than the average of multi crystalline module. As a result of comparing domestic module with Chinese module, the highest efficiency of mono crystalline module and multi crystalline module and the average efficiency of mono crystalline module are higher than those of Chinese module, but the average efficiency of multi crystalline module is similar to that of Chinese module.

Construction of Equipment for PV Module Manufacture and Temperature Characteristics of Laminator (태양전지 모듈 제조장치의 구성 및 Laminator의 온도 특성)

  • Kang, Gi-Hwan;So, Jung-Hun;Jung, Young-Seck;Jung, Myung-Woong;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1376-1378
    • /
    • 2002
  • Compare and examined Full Auto Line of PV module Manufacture Equipment and PV module Manufacture Equipment in the Korea. Full Auto Line has been constructed with Cell Selection. Tabbing & Stringing. Module Setting, Lamination, Curing and Module Testing, and Module Manufacture Line in the Korea has been constructed with Tabbing & Stringing. Module Setting, Lamination and Module Testing. Laminator's temperature Control is the most important Variable in Manufacture of PV module. Temperature Transformation of Center part of PV module is most high at Lamination, and Edge part is most low.

  • PDF

Power generation characteristics of thermoelectric module for waste heat energy harvesting (폐열에너지 하베스팅을 위한 열전모듈 발전특성 연구)

  • Yun, Jin Chul;Ju, Jung Myoung;Hwang, Jong Hyun;Park, Seong Jin
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.184-189
    • /
    • 2016
  • Recently, due to limitation of $CO_2$ gas emission and increase of demand to reduce energy consumption, lots of researches are conducted to harvest wasted heat energy with a thermoelectric module to produce electricity by Seebeck effect. This study was conducted to analyze characteristics of the thermoelectric module to apply for a heat energy harvesting device. Thermoelectric module composed of bismuth telluride was tested with various temperature conditions to analyze thermoelectric behavior of the module. Power generation efficiency of the thermoelectric module for various temperature condition was analysed with both experimental and theoretical methods. From the results, an optimum condition to harvest wasted heat energy with the thermoelectric module more efficiently was proposed.

A Preliminary Research of the Bifacial PV System Under Installation Conditions (설치환경 및 조건에 따른 양면수광형 태양광발전시스템의 기초 특성 연구)

  • Jang, Ju-Hee;Kwon, Oh-Hyun;Lee, Sang-Hyuk;Shin, Min-Su;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.51-63
    • /
    • 2018
  • Nowadays the bifacial PV system market and its applications are increasing rapidly. The performance of the bifacial PV system take advantage of its rear surface irradiance. Also, the ground albedo, PV module tilt and azimuth, PV module installation height, shading effect and module temperature are factors of bifacial PV system performance. This paper investigates how the performance of bifacial PV system is influenced by above factors. First, we analyzed the energy yield depending on PV module installation by simulation. Secondly, we compare energy performance evaluation of monofacial and bifacial module on different weather condition by experiment. Thirdly, we tested the albedo effect and checked operating characteristics using Dupont Tyvek material for the bifacial PV module. Fourthly, we check the shading effect of bifacial PV module on bypass diode operating. Finally, we applied the bifacial PV module in the nearby subway station for the noise reduction barrier using a qualified simulation program. In summary, we confirm that the energy performance superiority of the bifacial PV module has a lot of application use including road. Also, we have confirmed the bifacial module and inverter design should be considered by rear surface irradiance.

Estimation of Output Power for PV Module with Damaged Bypass Diode using MATLAB (Matlab을 이용한 손상된 바이패스 다이오드가 포함된 PV 모듈의 출력 추정)

  • Shin, Woogyun;Go, Seokhwan;Ju, Youngchul;Chang, Hyosik;Kang, Gihwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.63-71
    • /
    • 2016
  • Installed PV module in field is affected by shading caused by various field environmental factors. Bypass diodes are installed in PV module for preventing a power loss and degradation of PV module by shading. But, Bypass diode is easily damaged by surge voltage and has often initial a defect. This paper propose the electric characteristic variation and the power prediction of PV module with damaged bypass diode. Firstly, the resistance for normal bypass diode and damaged bypass diode of resistance was measured by changing the current. When the current increases, the resistance of normal bypass diode is almost constant but the resistance of damaged bypass diode increases. Next, To estimate power of PV module by damaged bypass diode, the equation for the current is derived using solar cell equivalent circuit. Finally, the derived equation was simulated by using MatLab tools, was verified by comparing experimental data.

Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics (지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.

A Study on the Thermal Characteristics of Vacuum Membrane Distillation Module (VMD 모듈의 열성능 특성 연구)

  • Joo, Hong-Jin;Yang, Yong-Woo;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.23-31
    • /
    • 2014
  • This study was accomplished to get the foundation design data of VMD(Vacuum Membrane Distillation) system for Solar Thermal VMD plant. VMD experiment was designed to evaluate thermal performance of VMD using PVDF(polyvinylidene fluoride) hollow fiber hydrophobic membranes. The total membrane surface area in a VMD module is $5.3m^2$. Experimental equipments to evaluate VMD system consists of various parts such as VMD module, heat exchanger, heater, storage tank, pump, flow meter, micro filter. The experimental conditions to evaluate VMD module were salt concentration, temperature, flow rate of feed sea water. Salt concentration of feed water were used by aqueous NaCl solutions of 25g/l, 35g/l and 45g/l concentration. As a result, increase in permeate flux of VMD module is due to the increasing feed water temperature and feed water flow rate. Also, decrease in permeate flux of VMD module is due to increasing salinity of feed water. VMD module required about 590 kWh/day of heating energy to produce $1m^3/day$ of fresh water.